Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал теоретический

    Е — теоретическая э. д. с., т. е. теоретический потенциал разложения электролита  [c.253]

    Отсутствие надежных данных по кислородному перенапряжению объясняется сложностью процесса анодного образования кислорода и почти неизбежным наложением на него побочных и вторичных реакций. Прежде всего необходимо напомнить, что обратимый кислородный электрод экспериментально реализовать чрезвычайно сложно, и, следовательно, входящая в уравнение (20.5) величина не определяется опытным путем. Ее обычно рассчитывают теоретически. Для выделения газообразного кислорода из растворов кислот необходимо, чтобы потенциал анода был более положительным, чем равновесный потенциал кислородного электрода ( + 1,23 В при ан = 1 и 25° С), на величину кислородного перенапряжения, отвечающую данной плотности тока. Однако еще до достижения такого высокого положительного потенциала больщинство металлов термодинамически неустойчивы, и вместо реакции выделения кислорода идет процесс их анодного растворения или окисления. Для изучения кинетики выделения кислорода из кислых сред можно использовать поэтому только металлы платиновой группы и золото (стандартные потенциалы которых ноложительнее потенциала кислородного электрода), а также некоторые другие металлы, защищенные от растворения в кислотах стойкими поверхностными оксидами. В щелочных растворах, где равновесный потенциал кислорода менее положителен (при аоп-= 1 и 25° С он составляет около +0,41 В), в качестве анодов применяют также металлы группы железа, кадмий и некоторые другие. Установлено, что в условиях выделения кислорода поверхность всех металлов, включая платину и золото, оказывается в большей или меньшей степени окисленной, и поэтому кислород выделяется обычно не на самом металле, а на его оксидах. [c.421]


    Для решения вопроса, является ли потенциал данного металла в каком-либо электролите обратимым или необратимым, следует сопоставить теоретическое, рассчитанное по уравнению (277), и опытное значение электродного потенциала металла, равно как [c.179]

    И) Как нри помощи постулата Планка, исиользуя закон Гесса н уравнение Кирхгофа, теоретически рассчитать изменение изобарно-изотермического потенциала химической реакции, константу равновесия и равновесный выход при различных температурах  [c.267]

    Таким образом, log В отличается от log В на аддитивную постоянную аналогично различаются log Г и log Г. Следовательно, график зависимости log В от log Г может быть совмещен параллельным переносом осей с графиком теоретической зависимости log В от log Г. Обычно экспериментальную зависимость строят на листе тонкой бумаги, затем передвигают ее относительно теоретической зависимости, достигая наилучшего согласования. Тогда смещение параллельно оси В дает величину о, а смещение параллельно оси Т — величину log (e/fe). При использовании трехпараметрического потенциала теоретическая зависимость представляет собой семейство кривых —одно для каждого значения третьего параметра. Третий параметр принимается для случая наилучшего совпадения экспериментальной зависимости с теоретической. Такие решения почти невозможно сделать на основании только данных по второму вириальному коэффициенту. Преимуществами метода переноса являются использование всех экспериментальных данных и простота проверки различных вариантов параметров. К недостаткам метода относятся его некоторая субъективность и неуправляемость в том случае, когда возникает необходимость полнее использовать очень точные данные. [c.246]

    В статье описано исиользование задерживающего потенциала для монохроматизации электронного пучка. Задерживающий потенциал создавался не электродом с тормозящим напряжением, а объемным зарядом, возникающим в диоде. Изменение анодного напряжения диода позволяет очень точно изменять на небольшую величину задерживающий потенциал. Теоретически рассмотрена работа ионного источника, в котором используется электронная пушка типа такого диода. Результаты проверены экспериментально на примере ионизации аргона. Исследовано влияние на вид кривых ионизации поперечных компонент скорости электронов и электрического поля, служащего для ускорения ионов, которое провисает в ионизационную камеру. Обнаружено, что кривые эффективности ионизации для из азота имеют ясно выраженный излом при энергии электронов на 1,35 0,02 эв выше порога ионизации. [c.467]


    Метод изменяющегося потенциала теоретический анализ. [c.23]

    Если полученное ранее уравнение состояния фазы (1.7) записать для одной из насыщенных фаз, покидающих произвольную теоретическую ступень, то, учитывая, что в условиях равновесия изменение изобарного потенциала равно нулю, можно получить, например, для жидкого потока [c.347]

    Анизотропия вращательной подвижности. Теоретические расчеты и данные машинного моделирования свидетельствуют о том, что молекулы воды вблизи межфазной границы ориента-ционно упорядоченны [2, 599, 600]. Наблюдаемый экспериментально поверхностный скачок потенциала и экспоненциальное отталкивание межфазных границ в тонких пленках также объясняется поляризацией молекул воды в поверхностной области [601, 602]. Вследствие ориентационной анизотропии возникает остаточное расщепление линий ЯМР воды и наблюдаются некоторые особенности ЯМР релаксации воды в гетерогенных системах. [c.234]

    Рассматривая теоретические принципы нарушения агрегативной устойчивости синтетических латексов электролитами, надо иметь в виду, что агрегативная устойчивость этих коллоидных систем обусловливается наличием адсорбционного слоя, который имеет достаточно высокий заряд диффузного ионного слоя ( -потенциал для большинства латексов равен 100- 60 мВ) [32], обеспечивающий стабилизацию таких систем за счет электростатических сил отталкивания, и достаточно высокую степень гидратации, наряду с вязкоупругими свойствами и достаточной механической прочностью. С другой стороны, стабилизация синтетических латексов осуществляется в большинстве случаев ионными ПАВ, у которых при введении электролитов в систему резко меняется растворимость и происходит их высаливание из раствора. [c.255]

    Основные электрохимические явления — это процессы, протекающие на границах различных фаз. Работа электрохимического элемента и его электродвижущая сила — это лишь суммарное проявление совокупности процессов, совершающихся на границах фаз, поэтому изучению молекулярных процессов на границах фаз, являющихся причиной возникновения на этих границах скачков потенциалов и, следовательно э.д.с., в теоретической электрохимии уделяется основное внимание. Однако отдельные скачки потенциала обычно нельзя измерить измеряются лишь электродвижущие силы. [c.519]

    Теоретический расчет значения к7 по уравнениям (4.10), (4.11) имеет очень высокую погрешность (500 — 800)% из-за совершенной неясности конфигурации активированного комплекса и трудностей, связанных пе только с выбором параметров потенциальной функции, но и поправочных коэффициентов на несферичность потенциала. Если, однако, рассматривать результаты расчета как устанавливающие лишь относительный ряд активности по третьему телу и пересчитать их на опорные значения А = / (Т, М) для М = Нз, взятые из экспериментов [102, 120], то получим (см. табл. 5) [32, 82] доверительный интервал 50% в области температур -<1000 К и 250% в области температур (1000- 2000) К. [c.273]

    Энергия активации диффузии д, г является функцией свойств диффузанта и среды, положительна и обычно возрастает с увеличением размеров молекулы и параметров межмолекулярного потенциала ец и ац. Соотношения для расчета и Е т через молекулярные характеристики диффузанта и свойства полимерной матрицы приведены во многих теоретических работах [6]. [c.78]

    Движение газовой пробки может быть охарактеризовано числом Фруда Рг = Здесь уместно напомнить теоретические положения, приводящие к Рг, поскольку некоторые из них используются применительно к псевдоожиженным слоям — как для плоского (т. е. двухмерного), так и для осесимметричного потока. Для плоского потока скоростной потенциал выразится  [c.174]

    В 1914 г. Л. В. Писаржевским было дано новое толкование электродных процессов, позволившее заменить формальную схему осмотической теории Нернста реальной физической картиной. Несколько позже (1926 г.) аналогичные идеи высказаны Н. А. Изгарышевым и А. И. Бродским. По Л. В. Писаржевскому, причинами перехода ионов металла в раствор являются диссоциация атомов металла иа ионы и электроны и стремление образовавшихся ионов сольватиро-ваться, т. е. вступать в соединение с растворителем. Необходимо, следовательно, учитывать два равновесия одно — между атомами металла и продуктами его распада (ионы и электроны) и другое — при сольватации (в водных растворах — гидратации). Таким образом, потенциал металла, погруженного в раствор, зависит от обоих процессов и состоит из двух слагаемых, одно из которых зависит от свойств металла, а второе — от свойств как металла, так и растворителя. Эти новые взгляды, основанные на электронных представлениях, качественно совпадают с современными представлениями, которые, таким образом, были предвосхищены Л. В. Писаржевским задолго до квантовой механики, статистики Ферми и других современных теоретических методов, [c.216]

    Бинарный сплав как короткозамкнутая, многоэлектродная система может быть рассчитан при помощи соответствующей диаграммы коррозии этой системы (см. с. 287). Теоретический анализ подобного рода диаграмм для сплавов приводит к возможным кривым изменения потенциала бинарного сплава в зависимости от его состава (рис. 199). [c.297]


    При определении действительного числа ступеней или действительной высоты колонны принимается во внимание массообмен. При низких концентрациях, которые достигаются в системах с большим числом теоретических ступеней, массообмен становится медленным из-за низкого потенциала диффузии (низкая разность концентраций), Кроме того, в некоторых системах установок господствуют в целом невыгодные кинетические условия, что еще более затрудняет массообмен. [c.374]

    В последние два-три десятилетия в связи с открытием И разработкой теоретических основ новых физических и физико-химических методов исследования вещества аналитический потенциал резко возрос. [c.4]

    Теоретический подход к определению облика диаграммы плавкости возможен на основании анализа зависимости удельного изобарного потенциала раствора от его состава (рис. 74). Для механической смеси изотерма О = /(с) будет прямой (линия /) для раствора она криволинейна с выпуклостью к оси состава (линия 2), так как образование раствора сопровождается убылью (5-потенциала. Если же, на-г. ример, при данной температуре вещества смешиваются ограниченно, т. е. имеется область сосуществования двух взаимно насыщенных растворов (см. рис. 42), то на О—с-кри-вой появится участок, обращенный выпуклостью вверх (линия 3 на рис. 74) абсциссы точек с и с1 соответствуют концентрациям этих растворов. [c.225]

    Обсуждение результатов моделирования. Данные по расчету физико-механических характеристик процесса набухания проводятся для интервала времени от 10—15 до И 10 с. Верхний предел обусловлен временем установления термодинамического равновесия, нижний — скоростью изменения химического потенциала растворителя в системе. Теоретически значение химического потенциала растворителя в материале полимера в начальный момент времени = О равно ,=о = —оо. В этот момент времени парциальный мольный объем растворителя ю в системе бесконечно велик, так как напряжения, возникающие в грануле сополимера, всегда имеют конечную величину, т. е. IV =о = Эти условия при < О не могут быть воспроизведены на ЦВМ (ввиду ограниченности разрядной сетки машины). Поэтому необходимо задавать конечные и начальные значения химического потенциала растворителя в сополимере и его парциального мольного объема. [c.325]

    Явления перенапряжения представляют не только теоретический, но и практический интерес, в частности перенапряжение водорода. Для иллюстрации этого можно указать, что выделение путем электролиза таких металлов, как Ре, РЬ, 2п, которые стоят выше водорода в ряду напряжений, может осуществляться только благодаря тому, что они обладают перенапряжением, значительно меньшим, чем перенапряжение водорода на этих металлах, в особенности при высоких плотностях тока. Поэтому потенциал выделения его становится большим, чем потенциал выделения этих металлов. В случае применения тока большей плотности при высоком перенапряжении можно получать вещества в более активном состоянии. [c.452]

    Так как электродные потенциалы играют очень большую роль в коррозионных процессах, то весьма важно знать значения этих потенциалов, а отсюда и действительную разность потенциалов между металлом и раствором электролита. Однако абсолютные значения потенциалов до сих пор не удалось определить. Нет достаточно надежных методов экспериментального измерения или теоретического вычисления абсолютных значений потенциалов, и вместо абсолютных электродных потенциалов измеряют относительные, пользуясь для этого так называемыми электродами сравнения. Этот принцип определения значений электродных потенциалов основан иа том, что если определить э. д. с. коррозионных элементов, составленных последовательно из большинства технических металлов и какого-нибудь одного, одинакового во всех случаях электрода, потенциал которого условно принят за нуль, то измеренные э. д. с. указанных элементов позволят сравнить электрохимическое поведение различных металлов. В качестве основного электрода сравнения принят так называемый стандартный водородный электрод, представляющий [c.23]

    Определение числа теоретических тарелок (щ) дпя лабораторных аппаратов является сложным и ответственным делом. Сложным потому, что оно связано с трудоемкими расчетами или с не менее трудоемким экспериментом. Ответственным потому, что оно является паспортизацией аппарата и характеризует его разделительный потенциал. Методы определения т т различны дпя двух типов ректификационных аппаратов (периодического и непрерывного действия), поэтому рассмотрим их отдельно. [c.146]

    Аналогичными недостатками обладает и другой критерий, также называемый иногда к. п. д. теплообменника. Он равен отношению перенесенного тепла к максимально возможному, т. е. к теплу, которое могло бы быть перенесено от одного теплоносителя к другому при бесконечном сближении разности температур на одном из концов и отсутствии потерь в окружающую среду. Этот критерий также не свидетельствует о достоинствах аппарата как конструкции (за исключением его изоляции). Он характеризует полноту реализации в данном процессе теоретически возможного теплового потенциала. Скорее, это характеристика роли аппарата в схеме, чем ответ на вопрос, насколько хорошо данный аппарат выполняет эту роль. [c.296]

    Строгий теоретический расчет адсорбционного потенциала проведен лишь для простых систем, например, адсорбции аргона кубической решеткой. Для сложных систем такой расчет весьма трудоемок. [c.41]

    Потенциал мягких сфер является хорошей моделью для многих газов при высоких температурах, когда сталкивающиеся молекулы обладают настолько высокой энергией, что силы притяжения вызывают лишь небольшое возмущение. При таких температурах квантовые поправки в крайнем случае составляют незначительную величину. Модель потенциала с обратной степенью была использована также для описания поведения газов, образующихся при детонации [27]. Однако лучшей моделью, имеющей некоторое теоретическое обоснование, как будет видно из следующего раздела этой главы, является модель с отталкиванием но экспоненциальному закону  [c.180]

    В работах Назарова и Башкатова [1, с. 144 6] рассмотрены некоторые вопросы теории вольтамперметрии при синусоидальном изменении потенциала в условиях симметричной диффузии, т. е. при соблюдении соотношений (10) и (11). Получен ряд теоретических уравнений, описывающих анодные пики электрорастворения металла из амальгамы. Показано, что при значениях параметра е>10 высота анодного пика перестает зависеть от скорости изменения потенциала. Теоретически найдено, что амплитуда переменного тока будет пропорциональна амплитуде переменного напряжения при АЕ 19,5/п мв с точностью до 10%. Показано, что в обще.м [c.24]

Рис. 5.2.6. Температурная зависимость интенсивности рассеяния рентгеновских лучей, измеряемой под углом Брэгга, для холестерилмиристата. 111триховая линия — расчетная интенсивность диффузного рассеяния и вклад флуктуаций в рассеяние. Сплошные линии — теоретические кривые интегральной интенсивности, обусловленной брэгговским и диффузным рассеянием и рассеянием на флуктуациях а — для потенциала упрощенной модели, б — для уточненного потенциала. Теоретическая интенсивность была выбрана равной экспериментальному значению при самой низкой из исследованных температур (МакМиллан [26]). Рис. 5.2.6. <a href="/info/26121">Температурная зависимость</a> <a href="/info/1054801">интенсивности рассеяния рентгеновских лучей</a>, измеряемой под углом Брэгга, для холестерилмиристата. 111триховая линия — <a href="/info/1648976">расчетная интенсивность</a> <a href="/info/646677">диффузного рассеяния</a> и вклад флуктуаций в рассеяние. Сплошные линии — <a href="/info/140038">теоретические кривые</a> <a href="/info/147066">интегральной интенсивности</a>, обусловленной брэгговским и <a href="/info/646677">диффузным рассеянием</a> и рассеянием на флуктуациях а — для потенциала <a href="/info/223112">упрощенной модели</a>, б — для <a href="/info/1726039">уточненного потенциала</a>. Теоретическая интенсивность <a href="/info/1330306">была</a> выбрана равной <a href="/info/363121">экспериментальному значению</a> при <a href="/info/1285110">самой низкой</a> из <a href="/info/390661">исследованных температур</a> (МакМиллан [26]).
    Канал (б) мо>1<ег быть эффективным и в прямых обменных реакциях (см. 21). Так, механизм дезактивации через обмен был предложен также для интерпретации б лстрой релаксации Н2 на Н, галогеноводородов на Н и молекул галогеЕюв на атомах галогенов [5, 527]. Расчет вероятности дезактивации в процессе (14.7) в общем случае столь же сложен, как и расчет вероятности прямых реакций обмена (см. 21), причем здесь решающее значение имеет воличпна энергии активации. Теоретические исследования динамики данных столкновений показывают, что очень часто эффективности каналов (а) и (б) оказываются сравнимыми и намного превышающими эффективность простого К7 -процесса, вероятность которого оценена по формуле (14.2). Безусловно, здесь важную роль играют те особенности поверхности потенциал .ной эпергии, которые отличают взаимодействия химически инертны. п химически активных партнеров. В частности, большая эффективность кана.1а (п) связана с тем, что соответствующие ему траектории не отталкиваются от барьера (как при простом УГ-процессе), а дважды его пересекают — н прямом и обратном панравлении [3271. [c.91]

    Как ранее было сказано, данные расчетов кривой титрования перманганатом (см. табл. 21) не являются реальными, так как система MnO jм.n электрохимически необратима в отличие от системы Ре /Ре . И если изменение потенциала, когда железо оттитровано до 99,97о, практически совпадает с теоретически рассчитанным, то теоретически рассчитанные потенциалы для точки эквивалентности и для последующих точек не соответствуют тем значениям, которые наблюдаются в реальных условиях. Реальный скачок потенциала (рис. 58) имеет намного меньшее значение (АВ), чем теоретически рассчитанное. Поэтому, если титрование завершить по достижении теоретически рассчитанной величины потенциала (С) точки эквивалентности, то раствор соли желе-за(П) будет перетитрован (точка О). Фактически потенциал точки эквивалентности не отвечает величине 1,387 в (точка С), а находится в пределах АВ и имеет меньшее значение. Несмотря на это, скачок потенциала достаточно велик, и конечная точка титрования практически отвечает точке эквивалентности. То же самое можно сказать о титровании железа(II) бихроматом, так как система Ст О тоже необратима. Поэтому следует всегда с огто-рожнсстью пользоваться термодинамическими значениями стандартных потенциалов ири расчете кривых титрования. Это особенно важно для правильного выбора индикаторов. [c.365]

    Однако реализовать кислородный электрод, поведение которого описывалось бы выведенными уравнениями, иа практике весьма трудно. Это обусловлено особенностями, отличающими все газовые электроды, и, кроме того, способностью кислорода (особенно во влажной атмосфере) окислять металлы. На основную электродную реакцию накладывается поэтому реакция, отвечающая метал-локсидному электроду второго рода. Даже на платине могут образовываться оксидные пленки, и поведение кислородного электрода не будет отвечать теоретическим ургвнениям эти отклонения проявляются, папример, в характере изменения потенциала с давлением кислорода. Кроме того, имеются основання полагать, что реакция иа кислородном электроде да ке в отсутствие поверхностных оксидов отличается от той, на которой основан вывод уравнения для потенциала кислородного электрода. По данным Берла (1943), подтвержденным и другими исследователями, часть кислорода восстанавливается на электроде не до воды, а до ионов пероксида водорода  [c.167]

    Уравнение (7.53) отличается от уравиения (7.49) значением стандартного потенциала (здесь S o при 25°С составляет —0,076 В) и характером зависимостн потенциала электрода от активности гидроксильных ионов. Поэтому значения потенциала кислородного электрода, полученные опытным путем, обычно не совпадают с теоретическими. [c.168]

    Однако следует иметь в виду, что на основной электродный процесс накладываются побочные реакции с участием хлора, приводящие к образованию продуктов е О гидролиза — гипохлоритов и хлоратов. Высокое положительное значение стандартного потенциала хлорного электрода (+1,358 Ei при 25°С) затрудняет подбор достаточно устойчивого, не реагирующего с хлором материала электрода. Тем пе менее при соблрздении определенных мер ряду авторов удалось получить опытные значения потенциалов хлорного электрода, совпадающие с теоретической величиной. [c.168]

    Из теории Нернста следует вывод о независимости стандартных электродных потенциалов от природы растворителя, поскольку величина Р, определяющая нормальный, или стандартный, потенциал электрода, не является функцией свойств растворителя, а зависит липJь от свойств металла. Одиако ни опыт, ни теоретические соображения не согласуются с подобного рода представлениями, что также приводит к необходимости пересмотра физических предпосылок теории Нернста. [c.220]

    Нулевая точка (н. т.), подобно стандартному потенциалу, отвечает вполне определенному составу раствора. Нулевую точку, подобно стандартному потенциалу, можно попытаться рассчитат . теоретически, используя определенные ( )изические свойства металла и растворителя, чего нельзя выполнить для потенциала нулевого заряда и для равновесного потенциала. Сопоставлять между собой различные системы металл — раствор целесообразно по значениям стандартных потенциалов и нулевых точек. Связь между нулевой точкой и потенциалами нулевого заряда передает уравиение [c.251]

    Практически перенапряжением называют разность между фактической и теоретической величиной потенциала разложения электролита. В технике большое значение имеет перенапряжение водорода, так как оно дос-тигает иногда очень большой величины. [c.253]

    Часто пользуются потенциалом межмолекулярных взаимодействий Бекинге-ма, в котором зависимость потенциала сил отталкивания от расстояния дается в виде более обоснованной теоретически экспоненциальной функции расстояния  [c.488]

    Эта зависимость тем более удивительна, что, казалось бы, никакой связи между величинами С и быть не должно. Ведь Е связано с энергетической природой активного центра, а С, с точностью до множителя пропорциональности, есть число активных центров на единице поверхности катализатора. До сих пор не дано полного теоретического обоснования этой интересной опытной закономерности . Пожалуй, наиболее правдоподобно звучит объяснение, данное Швабом на основании теории активных центров. Если катализ осуществляют только определенные активные центры, обладающие различным энергетическим потенциалом (т. е. катализ идет на наборе активных центров с разными энергиями активации на них), то по статистически-термо-дннамическим соображениям число их должно увеличиваться с уменьшением энергетического потенциала. На поверхности катализатора, обладающего по условиям приготовления центрами высокой активности, только эти центры и будут участвовать в процессе на поверхности же катализатора, пе имеющего центров высокой активности, катализ поведут менее активные, но более многочисленные центры. Следовательно, чем больше величина Е для данного катализатора из серии катализаторов с разной активностью центров, тем большего значения С следует ожидать. Поскольку между числом центров и их энергий наиболее вероятна экспоненциальная зависимость, качественно объяснимо и эмпирическое уравнение (XIII, 6). [c.336]

    Этот теоретический вывод также находит экспериментальное подтверждение. На рис. 1.1 показаны результаты прямых измерений вязкости воды в тонких гидрофильных кварцевых капиллярах и тонкопористых стеклах [12]. С уменьшением радиуса капилляров средняя вязкость воды растет. При интерпретации результатов измерений следует, однако, учитывать возможное влияние встречного электроосмотического потока под действием потенциала течения (электровязкость). Пунктирной [c.8]

    Для выяснения влияния природы иона электролита на устойчивость дисперсии алмаза в растворах ЫС1, СзС1 и ВаСЬ в широком интервале pH (2—9) и концентраций (10 — 5-10 моль/л для ЫС1 и СзС1 и 5-10 =—5-10 моль/л для ВаСЬ) получены зависимости обратной счетной концентрации частиц 1//г от времени t. Влияние исследованных катионов на коагуляцию дисперсии алмаза различно. При концентрации выше 1-10 2 моль/л значения -потенциала алмаза в растворах ЫС1, КС1 и СзС1 существенно не различаются. Следовательно, и результаты теоретических расчетов энергии взаимодействия частиц на основании классической теории ДЛФО, и ожидаемые степени агрегации должны быть близки. Наблюдаемое в эксперименте существенное различие в агрегативной устойчивости в растворах хлоридов щелочных металлов может быть объяснено с привлечением представлений о ГС и влиянии их структуры и протяженности на агрегативную устойчивость исследованных систем. [c.185]

    А. Н. Фрумкиным и В. Г. Левичем было теоретически доказано, что поверхность корродирующего металла остается приблизительно эквипотенциальной и при наличии неоднородностей, если только размеры включений малы, а электропроводность электролита достаточно велика, что подтверждено измерениями Г. В. Акимова и А. И. Голубева (рис. 129). Как видно из рис. 129, наблюдаются заметные изменения потенциала при переходе от одной сбставляющей сплава (анод—цинк, катод — Ре2п,) к другой, но абсолютная величина их невелика. В тех случаях, когда нас интересует только общая величина коррозии, а не распределение ее по поверхности (например, при определении величины само- [c.185]

    Теоретические исследования поведения органических веществ в неводных растворах при наложении неоднородного электрического поля [117, 118] позволяют объяснить поведение частиц твердых углеводородов петролатума в таком поле. При сравнительно малых напряженностях электрического поля вследствие поляризации двойного слоя частицы движутся в область большего градиента потенциала. При увеличении напряженности, когда происходит поляризация материала частиц, возникает пондеромотор-наясила, которая изменяет направление частиц в зависимости от диэлектрической проницаемости дисперсной фазы и дисперсионной среды. Измерения при помощи моста переменного тока Р-570 на частоте 1000 Гц показали, что диэлектрическая проницаемость дисперсионной среды больше, чем дисперсной фазы (2,00 и 1,93 [c.189]


Смотреть страницы где упоминается термин Потенциал теоретический: [c.328]    [c.326]    [c.188]    [c.4]    [c.206]    [c.224]    [c.541]    [c.349]    [c.86]   
Основы общей химической технологии (1963) -- [ c.119 , c.123 ]




ПОИСК





Смотрите так же термины и статьи:

Введение в параметры атом-ионного потенциала эмпирической поправки на основе сопоставления теоретически рассчитанных и полученных из эксперимента значений константы Генри

Теоретические вопросы Окислительные потенциалы

Теоретический наклон кривой потенциала для цилиндрических стеклянных электродов

Четвертая группа катионов Теоретические вопросы Окислительные потенциалы



© 2025 chem21.info Реклама на сайте