Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкость зависимость от температуры

Рис. 1У-17. Диаграмма Ватсона для расчета плотности жидкости. Зависимость со от приведенной температуры и приведенного давления р, [10]. Рис. 1У-17. Диаграмма Ватсона для <a href="/info/1792872">расчета плотности жидкости</a>. Зависимость со от <a href="/info/189020">приведенной температуры</a> и приведенного давления р, [10].

Рис. 1У-12. Диаграмма Кокса. Зависимость давления насыщенного пара жидкости от температуры Рис. 1У-12. <a href="/info/13605">Диаграмма Кокса</a>. <a href="/info/48607">Зависимость давления насыщенного пара</a> жидкости от температуры
    Растворимость газов в жидкости зависит от ее марки. С уменьшением плотности и увеличением температуры растворимость увеличивается. Для легких минеральных жидкостей зависимость коэффициента растворимости газов от температуры может быть выражена эмпирически  [c.214]

Рис. 65. Зависимость теплоты испарения некоторых жидкостей от температуры. Рис. 65. <a href="/info/385506">Зависимость теплоты испарения</a> <a href="/info/527472">некоторых жидкостей</a> от температуры.
Рис. 1-50. Зависимость температуры жидкости на тарелке от средней температуры кипения фракции Рис. 1-50. <a href="/info/356926">Зависимость температуры жидкости</a> на тарелке от <a href="/info/1455147">средней температуры кипения</a> фракции
    Коэффициенты диффузии в газах при давлении 1 ат составляют приблизительно 0,1 — 1 м / , а для жидкости значения их в 10 —10 раз меньше, т. е. порядка 1 см сутки. Зависимость коэффициентов диффузии в жидкостях от температуры выражается эмпирическим уравнением [c.246]

    Расчет давления насыщенного пара по методу Киреева. Этот метод основан на том, что кривые, выражающие зависимость давления пара жидкостей от температуры, подобны друг другу, в особенности для веществ, не слишком различающихся по своим физико-химическим свойствам и по температурам кипения. Уравнение Киреева имеет вид [c.168]

Рис. IV, 7. Зависимость давления насыщенного пара некоторых жидкостей от температуры. Рис. IV, 7. <a href="/info/48607">Зависимость давления насыщенного пара</a> <a href="/info/527472">некоторых жидкостей</a> от температуры.

    Изучение зависимости показателя преломления жидкости от температуры и длины волны света [c.96]

    Изображенный на рис. 18-4 график дает, с одной стороны, зависимость парциального давления пара в равновесии с жидкостью от температуры, а с другой стороны, зависимость температуры кипения жидкости от парциального давления ее равновесного пара, поскольку точка кипения определяется как температура, при которой уравнивается с внешним давлением. При температурах ниже молекулы могут испаряться с поверхности жидкости, но любой пузырек пара, образующийся внутри жидкости, разрушается внешним давлением на ее поверхности. Однако при 7 давление внутри таких пузырьков становится равным внешнему давле- [c.127]

    Кривые давления пара (см. рис. 64) выражают не только зависимость давления насыщенного пара от температуры, но и зависимость температуры кипения от внешнего давления. Повышение давления всегда повышает и температуру кипения, и наоборот, под пониженным давлением жидкости кипят при более низкой температуре. Нормальной температурой кипения, иначе точкой кипения, называется температура кипения при нормальном атмосферном давлении, т. е. температура, при которой давление насыщенного пара становится равным нормальному атмосферному давлению — 760 мм рт. ст. [c.173]

    Зависимость нижнего допустимого предела давления от температуры — причина основного отличия расчета транспортирования легкоки-пящих жидкостей от транспортирования нефти или воды. Поэтому определение закона изменения температуры перекачиваемой среды при гидравлическом расчете трубопровода необходимо не только для расчета физических свойств, в частности, плотности, перекачиваемой среды, но и для оценки перепада давления. При перекачке жидкости распределение температуры по длине трубопровода определяют по формуле Шухова [c.175]

    Согласно принципу соответствия, отдельным фазам на диаграмме будут соответствовать геометрические элементы твердой фазе— площадь над кривой аОЬ, жидкой фазе — площадь над кривой ЬОс, газовой фазе (пар)—площадь под кривой аОс. Граничные кривые соответствуют сосуществованию фаз Оа — твердой и газовой (зависимость давления насыщенного пара от температуры при наличии твердой фазы), Ос — жидкой и газовой (зависимость давления насыщенного пара от температуры над жидкостью), ОЬ — твердой и жидкой (зависимость температуры плавления от давления). [c.185]

    Оценку эффективности различных растворителей для экстракционной перегонки можно произвести различнымт способами. Предварительный отбор может быть выполнен путем измерения температур кипения смесей углеводородов и растворителя. Хороший растворитель должен обладать значительно более низкой экспериментально измеренной температурой кипения смеси, чем температура, рассчитанная на основе линейной зависимости между составом и температурой кипения. Это иллюстрируется графиком (рис. 5), выражающим зависимость температуры кипения смеси метил-циклогексана с анилином от состава [11]. Экспериментальная кривая, выражающая зависимость температуры кипения от состава смеси, расположена значительно ниже пунктирной линии, соответствующей линейной зависимости между температурой кипения и составом. Это показывает, что образуются неидеальные растворы, для которых отклонения от закона Рауля имеют положительное значение. Экспериментальные данные по равновесию пар—жидкость показали, что в качестве растворителей для [c.100]

    На рис. 50 представлена расчетная зависимость температуры капли испаряющейся воды, этилового спирта и бензина Б 95/130, а также скорости испарения этих жидкостей при их впрыскивании в поток воздуха 4= =204°С от давления рс. Температура воздуха в конце сжатия постоянна (4=204°С). Как видно из приведенных данных, повышение давления охлаждаемой среды при неизменной ее температуре приводит к замедлению скорости испарения воды, этилового спирта и бензина Б95/130. [c.122]

    После каждой перекачки горячего высоковязкого продукта все трубопроводы, в том числе и аварийные, прокачивают маловязким незастывающим продуктом, чтобы исключить застывание первого. При обнаружении участков изоляции, пропитанных нефтепродуктом, принимают меры к предотвращению ее самовоспламенения (заменяют пропитанную изоляцию, подводят водяной пар). Запорную и регулирующую арматуру на трубопроводах в зависимости от рабочих параметров и свойств транспортируемой среды устанавливают, руководствуясь РУ—75. Для сжиженных газов и легковоспламеняющихся жидкостей с температурой кипения до 45 °С, независимо от температуры и давления среды, арматура должна быть стальной. Расположение запорных устройств должно быть удобным и безопасным для обслуживания. Задвижки, вентили, краны и прочие запорные устройства должны обеспечивать надежное и быстрое прекращение поступления продукта в отдельные участки трубопроводной сети. Всякие неисправности в запорных устройствах на трубопроводах необходимо устранять. Нельзя оставлять задвижки открытыми на неработающих аппаратах, оборудовании или трубопроводах. Выключенные из технологической схемы аппараты, оборудование и трубопроводы отглушают. Задвижки и вентили на трубопроводах систематически смазывают. Нельзя применять для открытия и закрытия арматуры ломы, трубы и другие приспособления. [c.115]


    Диаграмма состояния воды. На рис. 82 показана в схематической форме (т. е. без строгого соблюдения масштаба) диаграмма состояния воды в области невысоких давлений. Кривая ОС представляет зависимость давления насыщенного пара жидкой воды от температуры, кривая О А — зависимость давления насыщенного пара льда от темпе-, ратуры и кривая ОВ — зависимость температур замерзания воды от внешнего давления. Эти три кривые разделяют диаграмму на поля, каждое из которых отвечает одному из агрегатных состояний воды —пару, жидкости и льду. [c.248]

    Значение константы Генри зависит от свойств газа, жидкости и температуры [1, 2]. Линейный характер зависимости (I, 1) нарушается ири больших концентрациях распределяемого компонента. Получить аналитическую зависимость тнпа (I, 1), т. е. предсказать значение т для какой-либо системы, возможно только для малых концентраций (менее 1 мол.%). [c.13]

    Функциональная зависимость давления насыщенного пара жидкости от температуры может быть выражена уравнением (IV, 56), а вдали от критической температуры уравнением (IV, 57). [c.144]

    В прямой зависимости от давления насыщенного пара раствора нелетучего вещества находится температура его кипения. Температурой кипения жидкости является температура, при которой давление ее паров становится равным внешнему давлению (100° С для воды, 80° С для бензола при Я = 1 атм). Следует обратить внимание на важное отличие раствора от чистого вещества. Температура кипения раствора отвечает его равновесию с первым пузырьком пара (начало кипения). Действительно, в силу нелетучести растворенного вещества утрата раствором даже ничтожно малого количества испарившейся жидкости приводит к увеличению концентрации раствора. Она будет отличаться от первоначальной и поэтому свойства раствора станут иными. [c.152]

    Указанная выше зависимость теплоемкостей газов, твердых гел и жидкостей от температуры дана в табл. 6—9, 12—14 и 15. Теплоемкость твердых и жидких тел практически не зависит от давления. Теплоемкость же газов в зависимости от давления [c.91]

    Последовательность выполнения работы. 1. Залить в сосуд / (см. рис. 53) стандартную жидкость и измерить ее поверхностное натяжение, как это было описано в работе 1 при всех указанных преподавателем температурах. Температуру установить по термометру 8 (см. рис. 53). Эта температура может на несколько градусов отличаться от той, которая задана преподавателем. 2. По окончании измерений показаний тягомера при всех температурах для стандартной жидкости пипеткой извлечь стандартную жидкость из сосуда /, высушить его и залить исследуемую жидкость. При замене жидкости в сосуде / через ультратермостат пустить холодную воду с тем, чтобы температура ультратермостата снизилась до начальной. 3. Измерить разрежение по тягомеру для исследуемой жидкости при всех заданных температурах. 4. Построить график зависимости поверхностного натяжения стандартной жидкости от температуры. 5. Рассчитать по уравнению (И 1,12) поверхностные натяжения исследуемой жидкости при всех температурах. 6. Построить график зависимости поверхностного натяжения исследуемой жидкости от температуры. 7. Определить экстраполяцией критическую температуру. Полученные величины сопоставить со справочными. [c.103]

    Е Построить график зависимости давления паров исследуемой жидкости от температуры в координатах р — /"С и lg р— 1/Т° К- [c.171]

Рис. 83. Зависимость отношения пар жидкость от температуры для опытных бензинов. Рис. 83. <a href="/info/1392332">Зависимость отношения</a> пар жидкость от температуры для опытных бензинов.
    Величина -ф в системах жидкость—жидкость и особенно в системе жидкость—газ является функцией температуры (см. раздел 5.2). В системе жидкость— жидкость зависимость эта выражается формулой Нернста [c.179]

    Для большинства твердых тел и жидкостей зависимость объема от температуры описывается линейным уравнением [c.48]

    С повышением температуры плотность всех жидкостей, как правило, уменьшается. Д. И. Менделеев нашел, что зависимость плотности жидкости от температуры обычно хорошо выражается линейным уравнением вида  [c.164]

Рис. 93. Зависимость температуры кипения раствора от состава жидкости и пара Уфи Р = onst Рис. 93. <a href="/info/1702746">Зависимость температуры кипения раствора</a> от состава жидкости и пара Уфи Р = onst
    Математическая модель может использоваться для исследования различных режимов разделения, а также для расчета статических характеристик колонны по различным каналам, например, по каналам количество питания—состав продуктов разделения , состав питания — состав продуктов разделения , величина орошения — состав продуктов разделения и т. п. При наличии зависимости температуры кипения от состава (IV, 158) при помощи рассмотренной модели можно найти положение контрольной тарелки в колонне. По температуре жидкости на контрольной тарелке регулируется режим разделения. [c.310]

    Рие. 24. Зависимость вязкости углеводородных жидкостей от температуры [4]  [c.40]

    Экспериментально установлено, что состав пара смеси в общем случае не совпадает с составом жидкости, находящейся в равновесии с этим паром. На различии составов жидкости и пара основана перегонка смесей, имеющая большое практическое значение. На рис. 93 приведена зависимость температуры кипения от состава жидкости (кривая и пара (кривая а в). Точка t отвечает температуре кипения чистого компонента А, точка tв. — температуре кипепия компонента В. Область / относится к жидкости область // —к пуру. При этих условиях однофазные двухколшо-нентные системы имеют две степени свободы состав и температуру. Точка а обозначает жидкость состава х - При повышении температуры жидкой смеси до температуры / она закипит. [c.198]

    Для кипения жидкости необходимо, чтобы упругость ее паров равнялась внешнему давлению. Понижая внешнее давление, мы понижаем и требующуюся для кипения упругость паров, а следовательно, и температуру кипения жидкости. Зависимость температуры кипения жидкости от внешнего давления, следовательно, может быть выражена той же самой кривой, что и зависимость упругости паров этдй жидкости от температуры. [c.72]

    Змачинский использовал диференциальный эбуллиоскопический метод, приняв воду в качестве эталонной жидкости. Зависимость температуры кипения толуола от температуры кипения воды Змачинский [162] выразил следующим уравнением  [c.142]

    Другой способ измерения эффективной испаряемости — посредством однократного испарения [28]. Бензин медленно пропускается через миниатюрную трубчатую установку, в которой поддерживается постоянная температура. Неиспарившийся остаток, полученный при различных температурах, собирается, и на графике наносится зависимость между объемом неиспарившейся жидкости и температурой однократного испарения. Полученные кривые имеют гораздо более ориентировочный характер, чем кривые разгонки по ASTM они практически линейны большинство подвергнутых испытанию бензинов при однократном испарении выкипает в пределах 70—160° С. [c.393]

    В зависимости от условий работы насоса, т. е. от вида перекачиваемой жидкости, ее температуры и создаваемого давления, необходимо соблюдать определенные зазоры (посадки) между сопрягаемыми деталями, правила сборки, регулировки механизма парораспределения (для поришевых пасосов) и требования к изготовлению запасных частей. [c.227]

    Диаграммы такого типа часто применяются для представления зависимости давления насыщенного пара различных жидкостей от температуры (рис. 1У-12). Вместо давления насыщенного пара удобнее использовать рп, что значительно расширяет пределы измерения на диаграмме. На оси абсцисс откладываются значения g рп стандартного вещества, а так как для него известна зависимость от t° , на ось сразу наносятся значения температур, соответствующие (такая шкала не будет равномерной). На оси ординат откладываются значения g р сравниваемой жидкости. Выгоднее пользоваться логарифмической шкалой, поскольку при этом можно непосредственно определять значения давлений (не нужен пересчет значений р с lgPn)  [c.88]

Рис. 94. Зависимость температуры кипения от состава жидкости и пара при Р = onst Рис. 94. <a href="/info/33814">Зависимость температуры кипения</a> от состава жидкости и пара при Р = onst
    Если два вещества смешать друг с другом в определенных пропорциях и смесь нагреть до высокой температуррзг, то в подавляющем большинстве случаев образуется совершенно однородная жидкость, представляющая собой раствор одного компонента в другом. Некоторые системы дадут два жидких слоя взаимно насыщенных растворов, и только немногие будут совершенно нерастворимы друг в друге ми прн каких условиях. Это относится к таким веществам, которые не разлагаются до температуры плавления. Если такой раствор пли снлав охладить, то при некоторой температуре он начинает кристаллизоваться, так как растворимость веществ с понижением температуры, как правило, уменьшается. Природа и количество выпадающего вещества обусловливается природой и количественными соотношениями компонентов в растворе. Как и при всякой кристаллизации, здесь будет выделяться теплота кристаллизации, которая влияет на скорость охлаждения сплава. В некоторых случаях охлаждение может полностью прекратиться и температура смеси в течение некоторого времени будет оставаться постоянной. Таким образом, охлаждая определенный раствор, достигают неравномерного падения температуры в зависимости от нронсходящих в сплаве процессов. Если наносить на оси ординат температуру, а на оси абсцисс — время, то будут получаться кривые, иллюстрирующие процесс охлаждения. Вид этих кривых будет в высокой степени характерен как для чистых веществ, так и для их смесей различных концентраций. В процессе кристаллизации в зависимости от состава смеси могут выпадать твердые чистые компоненты, или твердые растворы. Кривые, выражающие зависимость температуры кристаллизации и плавления от состава данной системы, называются диаграммами плавкости. Эти диаграммы подразделяются на три типа в зависимости от того, какая фаза выделяется из раствора. К первому типу относятся системы, при кристаллизации которых из жидких растворов выделяются чистые твердые компоненты, так называемые неизоморфные смеси. Второй тип представляют системы, при кристаллизации которых из жидких растворов выделяются твердые растворы с неограниченной областью взаимной растворимости, так называемые изоморфные смеси. Третий тип системы, при кристаллизации которых из жидких растворов выделяются твердые растворы, характеризуются определенными областями взаимной растворимости. [c.227]

    На приборе Санбери была оценена склонность бензинов к образованию паровых пробок при добавлении различных низкокипящих компонентов. Исследованию подвергались бензин термического крекинга и бензИн платформинга с добавлением бутана (3,7 и 10%), газового бензина (5, 10 и 15%) иЗ технического изопентана (5, 10 и 15%). Полученные зависимости соотношения пар жидкость от температуры бензинов приведены на рис. 80. Первое, что привлекает внимание - при анализе этих данных, это изменение характера кривых для бензинов, содержащих избпентан. Температурная кривая соотношения лар жидкость [c.199]

    Зависимость температуры кипения смеси от состава жидкости при Р = onst (данные х—Т). [c.119]


Смотреть страницы где упоминается термин Жидкость зависимость от температуры: [c.542]    [c.95]    [c.199]    [c.200]    [c.19]    [c.21]   
Основные процессы и аппараты химической технологии Издание 4 (низкое качество) (1948) -- [ c.47 ]




ПОИСК





Смотрите так же термины и статьи:

зависимость от температур



© 2025 chem21.info Реклама на сайте