Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент растворяющей способности

Рис. 35. Изменение коэффициента трения (при фиксированных I, С , О), пропускной способности (при фиксированных О, 1 Ы)п диаметра трубопровода (при фиксированных Q и Л") при подаче водных растворов полимеров Рис. 35. <a href="/info/325212">Изменение коэффициента</a> трения (при фиксированных I, С , О), <a href="/info/336846">пропускной способности</a> (при фиксированных О, 1 Ы)п <a href="/info/534367">диаметра трубопровода</a> (при фиксированных Q и Л") при подаче <a href="/info/6274">водных растворов</a> полимеров

    При моделировании экстракционных процессов основная задача сводится к математическому расчету концентрации компонентов, перешедших в экстрактную фазу, и последующему расчету коэффициента распределения. Построив кривую равновесия, можно рассчитать основные показатели разделения при одноступенчатой или многоступенчатой экстракции. Уравнение параметра растворимости Гильдебранда характеризует относительную растворяющую способность растворителя. В уравнении не учитывается второй компонент, с которым при образовании раствора взаимодействует первый. Природа растворяемого компонента может быть самой различной, и поэтому энергия взаимодействия должна меняться в широких пределах. [c.217]

    Постоянство селективности можно объяснить тем, что в системе капролактам — вода одновременно с ростом концентрации в объеме раствора меняется состав связанного слоя, но как толщина его, так и коэффициент распределения растворенного вещества между этим слоем и раствором от изменения концентрации в последнем практически не зависят. То, что зависимость Х2=1(х1) экстраполируется в начало координат, свидетельствует о том, что в системе капролактам — вода оба компонента смеси обладают способностью сорбироваться на поверхности мембраны. Наклон этой прямой характеризует их относительную способность к сорбции. [c.222]

    Исходя из коррозионной способности среды, насыщенный раствор МЭА направляют в трубное, а регенерированный раствор — в межтрубное пространство теплообменника. Аппарат выполняется в соответствии с требованиями ГОСТ 14246—69, категория исполнения Б. При таком материальном оформлении аппарата можно применять трубки трубного пучка диаметром 20 мм, располагая их по квадрату. Для уменьшения коррозии принимают относительно невысокие скорости потока в трубном пространстве (0,5—0,8 м/с), чтобы потери напора были оптимальны даже при четырехходовой но трубному пространству конструкции и сдвоенном расположении аппаратов. При этом длина трубок трубного пучка составляет 6000 мм. Диаметр аппарата выбирают при линейных скоростях потоков в трубном пространстве 0,5—0,8 м/с, а в межтрубном — не ниже 0,3 м/с. Площадь поверхности теплопередачи рассчитывают на основании практических значений коэффициента теплопередачи — для рассмотренных условий 290—350 Вт/(м -°С). [c.89]

    Электролитами называют вещества, которые в растворе или расплаве распадаются на ионы —электрически заряженные частицы, способные к самостоятельному существованию в этих средах. Количество ионов каждого знака определяется стехиометрическими коэффициентами в формуле электролита при соблюдении закона электронейтральности, в соответствии с которым сумма положительных зарядов должна быть равна сумме отрицательных. Таким образом, несмотря на наличие ионов раствор остается электронейтральным. [c.429]


    Степень токсичности веществ в определенной мере зависит от путей поступления их в организм. В промышленной токсикологии практическую значимость имеют дыхательный, желудочный и кожный пути, которые определяются характером технологического процесса, а также физико-химическими свойствами продуктов. Для специальных целей (механизмы действия коэффициенты, характеризующие способность веществ проникать через кожу, и т. п.) представляют интерес также другие пути введения — под кожу, в вену и т. д. Биологический эффект вводимого вещества в значительной степени зависит от привходящих условий концентрации раствора или взвеси, pH, вязкости и, наконец, вводимого объема. [c.87]

    Независимо от того, каковы причины неполной ионизации электролитов в водном растворе — неполная диссоциация некоторых молекул или электростатическое притяжение между ионами, важен лишь факт, что только доля общего числа ионов, существующих или образующихся в растворе, способна участвовать в таких явлениях, как перенос электрического тока в растворах, понижение температуры плавления, повышение температуры кипения и т. д. Эта доля ионов называется активностью а коэффициент активности / выражает отклонение раствора с концентрацией с от поведения раствора при бесконечном разбавлении, принятого за стандартное состояние  [c.213]

    Смазочные добавки — реагенты, уменьшающие коэффициент трения и придающие буровому раствору смазывающую способность при высоком давлении. [c.185]

    Осмотический коэффициент непосредственно связан с коэффициентом активности раствора и является, наряду с последним, важным термодинамическим параметром [13—17]. Осмотический коэффициент, характеризуя изменение активности растворителя, выражает способность электролита связывать воду с учетом всех его индивидуальных свойств [15]. [c.21]

    Так как напряжение на поверхности концентрируется в вершине надреза или в области дефекта, там и происходит быстрый рост трещин. Поверхностные дефекты (например, питтинги или усталостные трещины) действуют как эффективные концентраторы напряжений. К тому же в достаточно глубоких поверхностных дефектах электрохимический потенциал, как отмечалось ранее, отличается от потенциала поверхности состав и pH раствора в местах поражений также изменяются вследствие работы элементов дифференциальной аэрации. Эти изменения в сочетании с повышенным локальным напряжением способны инициировать КРН или ускорить рост трещины. Именно поэтому титановые сплавы с гладкими поверхностями устойчивы к КРН в морской воде, но разрушаются, если на поверхности образовались коррозионноусталостные трещины [44]. Действительное напряжение в вершине трещины глубиной а в напряженном пластичном твердом теле может быть рассчитано как коэффициент интенсивности напряжения Кг- Для образца, изображенного на рис. 7.9, Кх вычисляется по формуле [45, 46] [c.146]

    Выявлена высокая экстракционная способность нефтяных сульфоксидов (т. е. продуктов окисления нефтяных сульфидов) по отношению к солям урана (уранила) и неодима. Эффективные коэффициенты экстракции уранилнитрата нефтяными сульфоксида-мй достигают 3600—4800 [587], причем циклические сульфоксиды обладают лучшими экстракционными свойствами, нежели алифатические. Емкость 50%-ных растворов нефтяных сульфоксидов в л -ксилоле по нитрату неодима достигает 100—120 г/л [588]. [c.81]

    С в 1 объеме воды растворяется 21 объем Oj. Из аминоспиртов наиболее широко используют растворы моноэтаноламина (МЭА), имеющего по сравнению с ди-и триэтаноламинами наибольшую поглотительную способность и наиболее высокий коэффициент абсорбции по двуокиси углерода [81]. В промышленных условиях применяют растворы моноэтаноламина концентрацией 12—35 вес.%. В зависимости от качества очищаемого газа и условий очистки 1 раствора моноэтаноламина поглощает 18—45 СОг. [c.124]

    Важная характеристика смазочной способности растворов— коэффициент трения в паре бурильная труба фильтрационная корка. Существуют различные приборы для измерения силы трения (коэффициента трения) или при движении трубы по корке, или в момент ее страгивания. [c.40]

    Кристаллы гексагональной сингонии способны существовать при повышенных температурах вплоть до температуры плавления н-алкана кристаллы же других сингоний существуют при пониженных температурах, ниже так называемой температуры перехода, вполне определенной для данного н-алкана. Кристаллы могут переходить из одной сингонии в другую при кристаллизации н-алкана из расплава или раствора в каком-либо растворителе, при плавлении кристаллов, а также в твердой фазе (рекристаллизация). Переход кристаллов н-алканов из одной сингонии в другую полностью обратим. Температура перехода для индивидуальных н-алканов является физической константой, так как при достижении такой температуры скачкообразно изменяются физические свойства, например плотность, теплоемкость, коэффициент расширения и др. Так, переход кристалла н-алкана из гексагональной сингонии в ромбическую сопровождается тепловым эффектом, рав- [c.81]


    Таким образом, коэффициент распределения является величиной, способной характеризовать энергетическое состояние системы. Существуют и другие характеристики системы, которые подобно коэффициенту распределения являются функциями взаимного влияния силовых полей молекул в растворе. К таким величинам прежде всего относится межфазное натяжение. Наличие связи между величиной коэффициента распределения в трехкомпонентной двухфазной системе и величиной меж-ноказано Винем [16]. [c.86]

    При выборе растворителя учитывают его избирательность и растворяющую способность, которые для каждого растворителя не являются постоянными и зависят как от технологических условий процесса, так и от химического состава сырья. Чем больше избирательность растворителя, тем более четко разделяются компоненты при контакте с ним, большей избирательности соответствует больший коэффициент распределения К. Чем выше растворяющая способность растворителя, тем большую массу извлекаемых компонентов можно растворить в нем и тем, следовательно, меньше потребуется расход растворителя. [c.296]

    ГГри выборе растворителя необходимо учитывать его избирательность и растворяющую способиость. Чем больше избирательность растворителя, тем выше четкость разд( ления компонентов, т. ( . том больше коэффициент распределения К [уравнение (10. 1)1. Чем выше растворяющая способность растворителя, тем большее количество извлекаемых компонептов может быть в нем растворено и тем, следовательно, меньше расход растворителя. Оба эти свойства растворителя для данной разделяемой смеси зависят от температуры экстракции. При повышении температуры избирательность растворителя уменьшается, а его растворяющая способность возрастает При понижении температуры наблюдается обратная зависимость. [c.270]

    Концентрация раствора пробы должна быть такой, чтобы оптические плотности на аналитических длинах волн находились в пределах 0,2—0,8. По разности удельных коэффициентов поглощения определяются коэффициент коксообразующей способности остатка ( ДК = К40П — К435)  [c.32]

    Превращение метастабильных (пересыщенных) растворов в стабильные равновесные фазы может протекать с самыми разнообразными скоростями и заканчиваться в различные сроки — от долей секунды до многих суток и недель. Важнейшим параметром, определяющим скорость разделения на две фазы, является степень пересыщения, а также подвижность макромолекул в данной системе, характеризуемая коэффициентом диффузии и, в какой-то степени, вязкостью. Разделение гомогенного метастабильного раствора на две фазы протекает, по-видимому, не путем возникновения зародышей двух готовых новых фаз и последующего их конкурирующего роста, но путем возникновения в исходном растворе вначале множества весьма малых областей, лишь незначительно отличающихся друг от друга по концентрацрга, представляющих собой неравновесные участки раствора, способные сливаться друг с другом и постепенно приближаться к равновесному С0СТ0ЯН1Ш. То обстоятельство, что обе возникающие фазы обычно вначале представляют собой жидкости, лишь слегка различающиеся по составу и имеющие небольшое межфазное натяжение, в значительной степени определяет характер образующихся гетерогенных систем. [c.60]

    Коэффициент термодинамической активности компонен-а характеризует силы связи его с атомами матрицы, т. е. го подвижность в твердом растворе, способность компонен-а оставаться растворенным или выделяться из раствора в ругую фазу. Многие процессы фазовых превращений, про-екающие в стали, определяются термодинамической ак-ивностью углерода и легирующих элементов. Так, в соот- етствии с первым законом Фика, диффузионный поток /г 1пределяется градиентом концентрации (дС /дх)  [c.53]

    Как уже указывалось, концентрацию С вычисляют для сильных электролитов, исходя из допущения полной диссоциации их в растворе. Что же касается коэффициента активности, то согласно современной теории сильных электролитов он представляет собой меру влияния электростатических сил притяжения и отталкивания, действующих между ионами, на способность иона к химическим действиям. Если 1, это значит, что ион стеснен в своих движениях межиоиными силами. В таком случае а а С, т. е. данное количество иоиов (С г-ион1л) действует так, как если бы их было меньше (а г-ион л). Если fn=l, то а = С. Это значит, что ион действует соответственно своей концентрации в растворе. Для сильных электролитов такое явление наблюдается только в очень разбавленных растворах (С = 0,0001 М или менее), где расстояния между ионами настолько велики, что действующие между ними силы практически не играют роли . Точно так же можно не учитывать межионные силы и в не слишком концентрированных [c.77]

    Е. М. Ковалев 51] экспериментально исследовал сепарирующую способность брызгоуловителей нескольких типов, применяемых в выпарных аиг[аратах (рпс. 6, а, б, г, (5, е). Для оценки эффективности каждого устройства определяли значение коэффициента очистки Л, нредставляюии го собой отпошепие концентрации С[ вещества (монохромата иатрия) в выпариваемом растворе к его коицеитрации Со во вторичном наре [c.22]

    Под действием механических напряжений нефтяная дисперсная структура способна к течению, но с раяличной скоростью. Текучесть (пластичность) дисперсных систем — величина обратно ироиорцнональная коэффициенту внутреннего трения (вязкости), Поэтому переход нефтяной системы из одного состояния в другое (молекулярный раствор, золь, гель) изменяет вязкость и соответс гвепно се способность к течению, выраженную с но-моп[ью различных количественных характеристик. [c.178]

    Представляют интерес данные о возможности катализа процессов замещения лигандов в комплексах платиновых металлов при экстракции их диалкилсульфидами и нефтяными сульфокси-дами [125—127]. Катализ наблюдался при добавлении в раствор веществ, способных генерировать свободные радикалы. Другой способ катализа заключался в обработке бромидного комплекса платины(И) оксидом углерода, ускорявшим процесс и увеличивавшим коэффициент распределения платины при ее экстракции дибу-тилсульфидом [127]. Экстракция сопровождалась быстрым замещением внутрисферного брома в образующемся карбонилбромиде на сульфид с образованием в органической фазе нейтрального соединения [Р1С0Вга дибутилсульфид]. [c.343]

    В связи со способностью активаторов снижать тормозящее действие ингибиторов авторы считают активаторы десорбирующими растворителями ингибиторов, уменьшающими адсорбционное выделение последних. По мнению А. Я. Духниной, В. Г. Николаевой и Г. И. Левинсон [97], смолистые вещества, адсорбируясь и накапливаясь на поверхности карбамида, ослабляют контакт между и-парафинами и карбамидом, чем снижают его активность. Ята [67] установил отрицательную роль кислых соединений, содержащихся в смолах, которые понижают поверхностное натяжение на границе вода — нефтепродукт. В другой работе Ята [102] показал, что образованию гомогенного раствора карбамида и к-парафина и, следовательно, столкновению их молекул препятствует ориентировка молекул ингибитора полярной группой по направлению к молекуле карбамида, а неполйрной — к молекуле к-парафина. Одновременно предложено оценивать степень влияния ингибиторов на образование комплекса при помощи коэффициента ингибирующего действия г, определяемого по формуле  [c.53]

    При увеличении концентрации ПАВ на поверхности и работы его когезии (уменьшение коэффициента растекания), что может быть вызвано, например, увеличением длины углеводородного радикала (рост энергии дисперсионного взаимодействия), создаютс т условия для конденсации пленки. В поверхностном слое образу-ются отдельные островки плотного монослоя (рои молекул), которые в процессе теплового движения передвигаются по поверхности значительно медленнее, чем отдельные молекулы. Вследствие этого поверхностное натяжение раствора оказывается больше (поверхностное давление меньше), чем оно могло быть при той же концентрации ПАВ при образовании газообразной пленки. Состояние пленок, способных к конденсации, описывает уравнение (III. 127). Пленки, образованные при сплошном заполнении поверхностного слоя, называют конденсированными. Твердые пленки обладают структурой, гродобной структуре твердого тела. Такая пленка если и течет, то очень медленно. [c.161]

    Способность нефтяных сернистых соединений эффективно экстрагировать из водных растворов золото, серебро и палладий подтверждается имеющимися литературными данными [15—18]. Золото из солянокислотных растворов, содержащих небольшие его количества, извлекали керосином или дизельным топливом, полученными из сернистых нефтей. При этом коэффициент распределения при низкой концентрации Аи был равен примерно 600 [15, 16]. Емкость летнего дизельного топлива (ГОСТ 305—58) по золоту при равновесной концентрации его в водной фазе 100 г/л составляла 2,39 вес. %, а при концентрации 1 з/л — 1,31 вес. %. Золото легко реэкстраги-ровалось из дизельного топлива 1,5—3,9 М раствором КОН с образованием Ап(ОН)з. Вместе с золотом дизельным топливом извлекались заметные количества Zn, Fe, u, а также металлы платиновой группы. [c.189]

    Из. азотнокислотных растворов золото (1П) экстрагируется гораздо слабее, а палладий, напротив, сильнее, чем нз солянокислотных. Экстракционная способность ДОС н ДОСО по отношению к палладию в азотнокислотных растворах практически совпадает. С увеличением концентрации HNO3 от 0,1 до 6 М при экстракции 0,4 М раствором ДОСО в бензоле коэффициент распределения палладия падает с 590 до 170, коэффициент распределения платины (IV) с 0,78 до 0,21, а для иридия он составляет около 1-10" . При низких кислотностях растворов ДОСО помимо Pd и Аи эффективно экстрагирует ртуть. Экстрагируемость серебра невелика, но, в отличие от ртути, она возрастает с увеличением концентрации HNO3 в водной фазе. Хотя ДОСО экстрагирует ртуть и серебро слабее, чем ДОС, коэффициент распределения этой пары при переходе к ДОСО увеличивается до 1000. [c.194]

    Отслаивание фазы, коэффициент растекания и значение ГЛБ сравнивались для различных масел и смесей двух эмульгаторов (снен-80 и твин-80) в разных соотношениях и для эмульсий, приготовленных из них. Коэффициенты растекания, полученные из данных межфазного натяжения, являются характеристикой способности масла растекаться по 1% водному раствору смеси эмульгаторов. В области значений ГЛБ 4—15 коэффициент растекания линейно увеличивается с повышением ГЛБ (рис. III.4). Выше значения ГЛБ, равного 8, зависимость линейна и отклонение от нее в нижней части графика объясняется неполной растворимостью эмульгатора в воде. [c.136]

    Противоизнос.ные и смазпчныв сапистйа характеризуют способность бурового раствора снижать соответственно износ взаимодействующих тел и потери энергии на трение. Показателем смазочных свойств является коэффициент трения, а противоизносных свойств — скорость изнашивания, интенсивность изнашивания. Степень проявления этих свойств определяется свойствами взаимодействующих тел. энергетическими условиями их взаимодействия, составом и физикохимическими свойствами растворов. Поэтому уровень противоизносных и смазочных свойств буровых растворов оценивается в области практически наблюдаемой энергетической зафузки применительно к тому или иному узлу трения — опорам долот, вооружению долот, бурильным трубам, поршням и клапанам насосов, опорам забойньге двигателей. [c.40]

    Тетофизические свойства, характеризующие буровой раствор как теплоноситель, а также способность его охлаждать (профе-вать) инструмент и стенки скважины. Основными показателями теплофизических свойств являются коэффициенты теплоемкости, теплопроводности и температуропроводности. [c.41]

    Перечисленные свойства в основном определяют преимущества и недостатки воды как бурового раствора. К преимуществам волы относятся 1) повышение показателей работы долот благодаря созданию на забое относительно низкого гидростатического и дифференциального давления, высоким охлаждающей и фильтрационной способностям, поверхностной активности 2) уменьшение потерь напора на преодоление гидравлических сопротивлений в циркуляционной системе вследствие низкой вязкости, отсутствия сопротивления сдвигу и, таким образом, достижения высокого коэффициента наполнения цилиндров буровых насосов, возможности подведения к забойному двигателю и долоту большей мощности 3) удобство очистки от шлама и газа на поверхности благодаря отсутствию структурообразования, в связи с чем не требуется специальных очистных механизмов, возможно освобождение от шлама в больших отстойных земляных амбарах 4) достаточно высокий уровень очистки забоя и ствола скважины от шлама в результате турбулентности течения и низкой вязкости, малому содержанию твердой фазы 5) отсутствие прихватов бурильной колонны, вызванных липкостью фильтрационной корки 6) облегчение условий работы буровой бретады 7) дешевизна и недефицитность в большинстве районов бурения 8) возможность повышения при необходимости плотности до 1200 кг/м введением солей. [c.42]

    Наиболее эффективными смазочными добавками в буровой раствор отечественного производства являются жирные кислоты и их мыла [9, 154]. Причем эффективность их возрастает с увеличением молекулярной массы жирш,1х кислот, т.к. повышается термостойкость, уменьшается коэффициент трения и фрикционная способность смазок [9, 154. 169]. [c.66]


Смотреть страницы где упоминается термин Коэффициент растворяющей способности: [c.44]    [c.44]    [c.118]    [c.280]    [c.284]    [c.49]    [c.327]    [c.108]    [c.178]    [c.181]    [c.8]    [c.318]    [c.307]    [c.343]    [c.91]    [c.184]    [c.189]   
Нефтяные битумы (1973) -- [ c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент растворов

Способность pH раствора



© 2025 chem21.info Реклама на сайте