Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод анализа измерений электронно-парамагнитный

    Метод основан на измерении поглощения молекулами излучения в радиочастотном диапазоне (X г 1 мм). В анализе используются два варианта метода электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР). В первом случае происходит резонансное поглощение радиоволн в веществах, обладающих парамагнитными свойствами, при наложении внешнего стати- [c.928]


    В настоящее время метод ЭПР используется не только для установления наличия неспаренных электронов в системе, но и для измерения концентрации парамагнитных центров. Более того, из анализа суперпозиции спектров путем разложения сложной линии на составляющие удается судить о наличии различных парамагнитных компонент в растворе [304]. [c.172]

    Наряду с исходными веществами и продуктами, в стадиях С. р. участвуют промежуточные вещества, не обнаруживаемые при использовании обычных способов наблюдения за протеканием реакции, т. е. химич. анализа или другого метода сходной чувствительности. Концентрации промежуточных веществ иногда доступны измерению с помощью специальных методов — спектроскопического, метода электронного парамагнитного резонанса и др. [c.453]

    Используемые в настоящее время методы изучения процессов окисления полимера включают измерение количества кислорода, поглощенного окисляющимся полимером, изучение изменений состава и свойств самого полимера или полимерного материала в ходе его окисления, изучение количества и состава летучих продуктов окисления, моделирование исследуемых процессов с помощью ЭВМ. Кроме этих методов при изучении окисления и других видов старения полимеров применяют методы электронного парамагнитного резонанса (ЭПР) [398], позволяющие идентифицировать отдельные типы свободных радикалов и следить за изменением их концентрации ядерного магнитного резонанса (ЯМР) [398, 399] и тонкослойной хроматографии [400], используемые для идентификации низкомолекулярных добавок, а также масс-спектроме-трии [401, 402] и газовой хроматографии [403—405], позволяющие анализировать летучие продукты деструкции. Существуют приборы, регистрирующие изменение массы (термогравиметрия) и тепловые эффекты (дифференциальный термический анализ) [c.218]

    Основными инструментами, с использованием которых можно регистрировать радикалы в жидкости, являются электронный парамагнитный резонанс (ЭПР) [45] и хемилюминесценция (ХЛ) [46,47]. Однако применение ЭПР для анализа процессов в воде ограничено в силу значительно меньших энергетических выходов радикалов и низкой чувствительности метода. Метод хемилюминесценции обладает высокой чувствительностью, достаточной для контроля естественных концентраций радикалов и перекиси водорода в воде. Методическая часть контроля радикалов и перекиси водорода в воде изложена в ряде работ [48,62]. Основа метода хемилюминесценции заключается в способности радикалов передавать возбуждение структурированным молекулам люминесцирующего соединения, в качестве которого используется люминол (ЬН ), с последующим выделением энергии в виде квантов света. Данный метод реализован в анализаторе типа ЛИК-2 [46-48], обеспечивающий возможность измерения концентрации радикалов 10 "моль л . [c.161]


    Оптические методы анализа основаны на измерении характе]5истик оптических свойств вещества (испускание, поглощение, рассеивание, отражение, преломление, дифракция, интерференция, поляризация света), проявляющихся при его взаимодействии с элекгромагнитшш излучением. По характеру взаимодействия электромагнитного излуч(шия с веществом оптические методы анализа обычно подразделяют на эмиссионный спектральный, атомно-абсорбционный, молекулярный абсорбционный спектральный (спектрофотометрия, фотоэлектроколориметрия), люминесцентный, нефелометрический, турбодиметрический, рефрактометрический, интерферометрическиг поляриметрический анализ, а также спектральный анализ на основе спектров комбинационного рассеяния (раман-эффект) и некоторые другие методы, также использующие взаимодействие электромагнитного поля с веществом — ядерный магнитный резонанс (ЯМР), электронный парамагнитный резонанс (ЭПР), ядерная гамма-резонансная спектроскопия (эффект Мессбауэра) и т. д. [c.516]

    В части 1 книги, посвященной структурным и электронным аспектам исследования роли ионов металлов в белках, сначала речь идет о возможностях и разрешающей способности рентгеноструктурного анализа белков. Здесь обсуждаются интересные и для неоргаников, и для биохимиков проблемы установления кристаллической структуры макромолекулярных веществ. При рассмотрении каждого примера сделана попытка соотнести кристаллографические данные с результатами, полученными такими методами, как измерение магнитной восприимчивости, электронный парамагнитный резонанс, поляризационная спектроскопия монокристаллов. В этой части рассматриваются гемовые белки, цинксодержащие металлоферменты, а также кобальт-, медь-, кадмий-, ртуть-, никель-, и марганецзамещенные карбоксипептидазы. Приведены данные по белкам, связывающим кальций. [c.9]

    На основе рентгеноструктурного анализа с высоким разрешением проведено сравнение стереохимических свойств трех типов взаимодействий металл—белок. Для установления структурных и электронных факторов, ответственных за регуляцию активности иона металла, рассмотрены координационные центры металл — лиганд в белках и прослежена связь между молекулярной структурой, стереохимией и электронной структурой и биологической ролью функции иона металла. Гидро( бное взаимодействие порфиринового кольца гемоглобина и миоглобина рассмотрено по данным измерений магнитной восприимчивости, спектроскопии парамагнитного резонанса и исследования поляризационных спектров поглощения монокристаллов. С точки зрения электронной конфигурации (1-орбиталей и геометрии координации обсуждается взаимодействие замещенных ионов металлов в карбоксипептидазе А с карбонильной группой субстратов при гидролизе пептидов. Предполагается, что спектральные изменения, зависящие от pH и наблюдаемые в спектре электронного поглощения, замещенного иона Со(П), каталитически активного в карбоангидразе, обусловлены образованием упорядоченной структуры растворителя вблизи иона Со(И), Корреляция между молекулярной структурой, определенной методами рентгеноструктурного анализа, и электронной структурой координационного центра металл — лиганды, оцененной из спектроскопических данных, указывает на происхождение структурной регуляции реакционной способности иона металла в белках и ферментах. [c.123]

    Другие методы основаны на магнитных свойствах неспаренных электронов. Измерение парамагнитной восприимчивости являлось долгое время наиболее ценным методом анализа, пригодным для изучения свободных радикалов, но этот метод далеко превзойден спектральным методом электронного парамагнитного резонанса (ЭПР), применимого для изучения даже корот-козкивущих радикалов в весьма малых концентрацях. Основные принципы, лежащие в основе этого метода, очень близки принципам ЯМР-спектроскопии, хотя ЭПР-спектры наблюдают при гораздо более высоких частотах, уже непосредственно в области радиочастот. Важными моментами являются следующие. Во-первых, интенсивность поглощения пропорциональна концентрации свободного радикала, что позволяет оценивать эту величину. Во-вторых, в спектре поглощения наблюдается сверхтонкая структура, появляющаяся за счет взаимодействия неспаренного электрона со спинами соседних ядер. Если ядро имеет спиновое число /, то мультиплетность линий за счет взаимодействия будет определяться формулой 21 1), причем интенсивность всех линий будет одинаковой. Конечно, интенсивности могут увеличиваться, если электрон взаимодействует с двумя или более идентичными ядрами, как происходит с делокализованным электроном в[метильном радикале (ср. с взаимодействием спинов в ЯМР-спектрах). Для этой частицы в спектре имеется квадруплет с интенсивностями 1 3 3 1. Спектр интересного циклогептатриенил-радикала С7Н7- содержит восемь линий, расположенных на равных расстояниях друг от друга и указывающих на взаимодействие электрона с семью эквивалентными атомами водорода, что свидетельствует о равномерном распределении электрона по кольцу. В общем случае, если взаимодействие (в гауссах) равно С, то степень локализации электрона в поле ядра, осуществляющего это взаимодействие, определяется величиной С/500. Для метильного радикала С равно примерно 23 Гс (2,3-10 Т), и, следовательно, электрон проводит V2o часть своего времени в поле каждого из ядер водорода, что указывает на довольно большую степень электронной делокализации. [c.177]


    В последнее время для определения содержания микропримесей получили распространение спектральные методы анализа, обладающие высокой селективностью, а в ряде случаев, и высокой чувствительностью [3]. Среди многообразия спектральных методов, изучающих молекулярный магнетизм веществ, метод электронного парамагнитного резонанса ЭПР имеет наивысшую чувствительность. Однако использование этого метода в каждом конкретном случае для измерения концентраций магнитных молекул требует детального рассмотрения. Ниже обсуждаются проблемы анализа кислорода в газовых смесях методом ЭПР. [c.49]

    Ароматичность порфиринового макроцикла широко изучалась методом ЯМР-спектроскопии [2]. Кольцевой ток, обусловленный делокализацией в порфириновой системе, использовался для исследования агрегации и большого числа других явлений. Вследствие деэкранирования жезо-протонов их сигналы появляются в спектре ПМР приблизительно при 10 млн (б) (химический сдвиг протонов бензола 7,2 млн ), а сигнал экранированного протона группы N—Н между —2 и —5 млн . Измерение химических сдвигов в ЯМР спектрах Н и С осложняется наличием концентрационной зависимости, обусловленной главным образом образованием слоев молекул в растворе [2]. При сближении молекул порфирина в растворе кольцевой ток одной из них вызывает сдвиг в сторону сильных полей линий в протонном и углеродном спектре заместителей другой молекулы. Анализ таких сдвигов используют для определения геометрической структуры этих димеров или более высоких агрегатов (в растворе). Гораздо чаще ЯМР-исследо-вание применяют для идентификации боковых цепей и определения изомерной чистоты порфиринов. При решении этих задач с большим успехом применялись сдвигающие реагенты 17]. Были исследованы также парамагнитные ЯМР-спектры гемов и гемо-протеинов [8]. В случае низкоспиновых цианоферригемов или гемопротеинов [8] неспаренный электрон вызывает чрезвычайно сильный сдвиг резонансных линий порфирина, которые таким образом далеко отходят от сигналов растворителя или протеиновых остатков. Величина смещения непосредственно зависит от спиновой плотности в геме, поэтому в ней отражаются малейшие возмущения, происходящие в физиологических условиях, когда гемо-протеин выполняет свою биологическую функцию, [c.393]

    Бирадикалы. Свободные радикалы, рассмотренные в предыдущем параграфе, содержат нечетное число электронов в молекуле, и поэтому каждая молекула должна иметь по крайней мере один неспаренный электрон. (См. 1.4.) Представляет интерес вопрос о том, может лн молекула с четным числом электронов иметь два неспаренных электрона и быть, таким образом, бирадикалом. На этот вопрос нельзя ответить на основании однпх только химических экспериментальных данных, так как нет материалов о связи между химическими свойствами вещества и наличием или отсутствием неспаренных электронов. Хотя верно, что окраска и высокая степень реакционноспособности часто считаются характеристикой свободных радикалов, но многие окрашенные и очень реакционноспособные вещества, как трифенилметилнатрий ( eH5)s Na, не являются свободными радикалами, а некоторые свободные радикалы, как, например, кислород О2, который является настоящим бирадикалом, бесцветен и не особенно реакционноспособен. Единственным совершенно строгим методо.м для обнаружения в молекуле наличия неспаренных электронов является детальный анализ ее спектра. Но этот процесс даже для простейших молекул очень сложен и трудоемок и совершенно неприменим для интересующих нас более сложных молекул. К счастью, есть другой метод, дающий достоверные сведения, за исключением некоторых частных случаев которые, вероятно, не встречаются в сложных органических молекулах. Этот второй метод основан на том -факте, что молекулы без неспаренных электронов почти всегда диамагнитны, а молекулы с неспаренными электронами обычно парамагнитны. Поэтому измерение магнитной восприимчивости вещества показывает почти совершенно надежно, имеются ли неспаренные электроны или нет. Более того, из числового значения магнитной восприимчивости можно найти истинное число неспаренных электронов, и [c.291]


Автоматический анализ газов и жидкостей на химических предприятниях (1976) -- [ c.49 ]




ПОИСК





Смотрите так же термины и статьи:

Электронный парамагнитный

Электронных пар метод



© 2025 chem21.info Реклама на сайте