Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсорбент выбор

    Ни один абсорбент не удовлетворяет всем перечисленным требованиям, поэтому при выборе процесса очистки и используемого абсорбента необходимо учитывать в первую очередь состав газа, подлежащего очистке, требуемую степень очистки и характер последующей об )а-б о г к и газа. [c.179]

    Повышение температуры в абсорбере происходит за счет выделения теплоты абсорбции при растворении извлекаемых компонентов в абсорбенте. Чем жирнее газ, тем больше количество поглощаемых компонентов, тем выше теплота абсорбции, тем выше средняя температура абсорбции. При абсорбции жирных газов рекомендуется принимать /абс = ср+(6 8°С). В зависимости от температуры абсорбции в качестве абсорбента принимаются углеводородные жидкости с молекулярной массой 100—200. При температуре абсорбции —15- —20 С применяются масла с молекулярной массой 140—120, при 40 °С — 180—200. Выбор определяется допустимыми потерями масла от испарения. [c.163]


    Для решения этой проблемы во ВНИПИГазпереработке выполнены работы ло выбору и испытаниям эффективного ингибитора коррозии оборудования. Изучение влияния повышенной концентрации аминов и присутствия ингибитора на основные технологические показатели процесса - поглотительную способность абсорбента, его термохимическую стабильность и вспениваемость показало, что оптимальными характеристиками обладают 4...5 н водные растворы моноэтаноламина (МЭА) и диэтаноламина (ДЭА). Дальнейшее повышение концентрации [c.62]

    Второе применение уравнения практически важно в тех случаях, когда прямое определение k a по данным физической абсорбции затруднено. Это может быть при достижении на одном из концов колонны условий, весьма близких к равновесным, что требует крайне точного измерения концентрации для определения k a. Тогда к жидкости следует добавить реагент такого типа и концентрации, чтобы масса жидкости поддерживалась в состоянии равновесия (предпочтительнее — с нулевой концентрацией непрореагировавшего растворенного газа) без заметного протекания реакции в диффузионной пленке. Надо лишь проявлять осторожность при выборе абсорбента с тем, чтобы обеспечить одновременное выполнение обоих условий. [c.189]

    Исследования no выбору оптимального состава композиции проведены на установке с замкнутым циклом абсорбции-десорбции при различных фиксированных температурах, объемах циркуляции и количествах ступеней контакта в абсорбере. Зависимость проскока СО с очищенным газом, характеризующая селективность, от числа ступеней контакта в абсорбере при различных кратностях орошения различными абсорбентами показана на рис. 3.14. (пунктиром указаны зоны, где не достигается требуемая глубина очистки от H S - менее 0,03% об.). [c.70]

    При переходе компонента из газовой фазы в жидкость выделяется определенное количество энергии, известной под названием теплоты абсорбции. По величине она несколько больше, чем скрытая теплота конденсации. Эта теплота поглощается абсорбентом и газом, поэтому температура их на выходе из абсорбера должна повышаться. Общее количество выделяющегося тенла пропорционально количеству поглощенных углеводородов, так как теплота абсорбции легких углеводородов мало зависит от их строения. В некоторых случаях (когда желательно вести процесс нри определенной температуре) абсорбент перед подачей в абсорбер охлаждают до необходимой температуры. В зависимости от температуры перерабатываемого газа в качестве абсорбента применяются масла с относительной молекулярной массой, равной 100—200. При температуре около —17° С применяются масла с относительной молекулярной массой 120—140, при 37,8° С — 180—200. В отрегенерирован-ном масле на выходе из выпарной колонны допускается небольшое содержание более легких, чем пентан, компонентов. Для уменьшения потерь масла от испарения при выборе его необходимо учитывать температуру абсорбции. [c.130]


    При разработке и проведении процессов разделения веществ, образующих азеотропные или близкокипящие смеси, часто необходимо подобрать эффективный разделяющий агент, растворитель или абсорбент. Вопросам выбора разделяющих агентов и растворителей посвящено большое число работ. Тем не менее, в настоящее время не возможна точная теоретическая оценка эффективности разделяющих агентов в различных технологических процессах, а методы, основанные на непосредственных экспериментальных исследованиях, являются трудоемкими и зачастую трудно реализуемыми в лабораторных условиях. Однако, несмотря на большое разнообразие подходов при выборе разделяющих агентов, все они в той или иной степени нуждаются в дополнительных экспериментальных исследованиях. Поэтому перспективными следует считать полуэмпирические методы [c.27]

    Величина 5 называется селективностью при бесконечном растворении, она может служить удобным критерием для выбора абсорбента в процессах разделения газовых смесей. [c.29]

    Блок 5 предназначен для выбора из массива М.П.2 фуппы наилучших абсорбентов. Здесь используются критерии [c.33]

    Для выбора расчетного уравнения сначала определяется режим движения абсорбента в трубном пучке аппарата, характеризуемый критерием Рейнольдса  [c.109]

    Опыт эксплуатации установок ДЭА-очистки показывает [5], что на селективность извлечения НзЗ в присутствии СО2 чрезвычайно большое влияние оказывают точный выбор числа тарелок в абсорбере и время контакта газа с абсорбентом. При малом времени контакта не достигается требуемая степень очистки газа от Н25, а при большом времени контакта увеличивается количество поглощенного диоксида углерода, что приводит к снижению селективности процесса. Оптимальное время контакта необходимо подбирать индивидуально для сырья каждого типа. [c.30]

    Ни один из известных абсорбентов не удовлетворяет всем перечисленным выше требованиям, поэтому при выборе абсорбента и способа очистки учитывают не только физикохимические характеристики абсорбента, но и состав газа, содержание кислых компонентов в нем, степень очистки и условия дальнейшей переработки газа. [c.43]

    Основными критериями при выборе абсорбентов, а следовательно, и процессов являются начальное и конечное содержание извлекаемых нежелательных компонентов в газе и заданное рабочее давление в системе или начальное и конечное парциальное давление их в условиях очистки. Начальное давление предопределяет кратность циркуляции абсорбента (удельный его расход). Конечное парциальное давление (или глубина очистки газа) зависит в первую очередь от степени регенерации абсорбента и от равновесного давления извлекаемого газа над раствором от температуры. Капитальные и эксплуатационные затраты определяются главным образом кратностью циркуляции и условиями регенерации растворителя. Следовательно, экономика процесса предопределяется в основном парциальными давлениями извлекаемых нежелательных компонентов в сыром и очищенном газе. На основе этих данных можно оценить, какой из растворителей — химический или физический — наиболее приемлем для заданных условий. После этого, учитывая специфику содержащихся в газе примесей и возможные варианты взаимодействия их с растворителями данной конкретной группы, можно выбрать процесс, который целесообразно будет использовать для проведения технико-экономического исследования. [c.141]

    При выборе абсорбента учитывают состав разделяемого газа, давление и температуру процесса, производительность установки. Выбор абсорбента определяется также его селективностью, поглотительной способностью, коррозионной активностью, стоимостью, токсичностью и другими факторами. [c.192]

    Условия контакта газа и гликоля в абсорбере. Температура контакта газа и гликоля оказывает существенное влияние на глубину осушки газа. При высокой темпера, туре контакта увеличивается парциальное давление воды над абсорбентом, а соответственно и содержание воды в газе. Снижение температуры повышает глубину осушки газа. Однако при выборе температуры контакта необходимо учитывать увеличение вязкости гликоля со снижением температуры и ухудшение ири -)том условий массообмена, а также опасность конденсании углеводородов. Верхний предел температуры контакта обуслов- [c.143]

    Основными аппаратами установки абсорбционной очистки газа являются абсорбер и десорбер. Выбор абсорбента существенно влияет на экономические показатели установки очистки, так как размеры оборудования, капитальные и эксплуатационные затраты зависят, в первую очередь, от интенсивности циркуляции поглотительного раствора. [c.84]

    Для процесса абсорбции при использовании абсорбента с молекулярной массой 100 давление сходимости принимается равным 2000 фунт/дюйм , при использовании абсорбента с молекулярной массой 140—160 — 4000 фунт/дюйм . Правильность выбора давления сходимости проверяют по жидкой фазе с нижней тарелки абсорбера. [c.61]

    Рассматривая технологические особенности процессов очистки газов, необходимо отметить, что выбор способа очистки сводится, как правило, к выбору абсорбента, который при соответствующем конструктивном и технологическом оформлении процесса обеспечивает производство товарного газа и сопутствующих продуктов (серы и др.) при высоких технико-экономических показателях. Ниже перечислены процессы очистки газов от сероводорода, СОз, RSH и других нежелательных соединений, основанных на химической и физической абсорбциях  [c.140]


    При выборе абсорбента и схемы абсорбционной установки необходимо учитывать все вышеперечисленные факторы. [c.198]

    Необходимо иметь в виду, что повышение степени извлечения компонентов в абсорбере за счет увеличения удельного расхода абсорбента, повышения давления или снижения температуры связано с дополнительными эксплуатационными затратами. Влияние этих параметров на результирующую эффективность процесса различно. Поэтому решение о выборе технологического режима может быть принято, как правило, только на основе оптимизационных расчетов, выполненных в целом по контуру абсорбер— десорбер . [c.202]

    При выборе оптимального варианта переработки газа по схеме НТК в качестве критерия оптимизации была принята температура конденсации газа. При этом давление в узле конденсации газа и деэтанизации конденсата во всех вариантах принято постоянным и равным 3.5 МПа. Изменение количества циркулирующего абсорбента в схемах НТА, а также температуры охлаждения газа в схемах НТК позволяет варьировать отбор пропана и более тяжелых углеводородов, добиваясь нахождения их оптимального значения. Во всех случаях целевыми компонентами являлись пропан + высшие. Известно, что энергозатраты на проведение процесса абсорбции в основном складываются из затрат на компримирование газа, охлаждение газа и тощего абсорбента, перекачку циркулирующего абсорбента. Энергозатраты на компримирование газа во всех вариантах практически постоянны. Энергозатраты на охлаждение газа и тощего абсорбента зависят от состава газа и удельного расхода абсорбента. [c.254]

    Согласно принципу Ле-Шателье понижение температуры и повышение давления способствуют протеканию реакций (2.2) — (2.6) в прямом направлении, а повышение температуры и понижение давления — в обратном направлении. Это положение является определяющим при выборе режимов очистки газа и регенерации насыщенного абсорбента. [c.39]

    Мокрые газоочистные аппараты широко применяются для предварительной очистки и соответствующей подготовки (кондиционирования) газов, поступающих в газоочистные аппараты других типов, в том числе и сухие (например, в электрофильтры, рукавные фильтры). В качестве орошающей жидкости в мокрых газоочистных аппаратах чаще всего применяется вода при совместном решении вопросов пылеулавливания и химической очистки газов выбор орошающей жидкости (абсорбента) обусловливается процессом абсорбции. [c.92]

    Снижение избирательности поглотителей усложняет регенерацию насыщенного абсорбента и затрудняет разделение газов десорбции.. Выделение метановой фракции из насыщенного абсорбента и возвращение ее в ноток товарного газа требует повышенны энергетических затрат. Поэтому выбор давления процесса при абсорбционной обработке газа должен осуществляться с учетом таких факторов, как требуемая степень извлечения целевых компонентов, затраты на дожатие газа, стой- мость оборудования и т. д. [c.201]

    Влияние свойств абсорбентов на абсорбцию. При выборе абсорбента следует стремиться к тому, чтобы по природе он был- подобен разделяемому газу, так как при этом процесс массообмена протекает более интенсивно. При абсорбции углеводородных газов в качестве абсорбента обычно применяют бензиновые или керосиновые фракции, а в. последние годы и газовый конденсат. Выбирая абсорбент, учитывают также давление и температуру процесса и производительность установки. [c.204]

    Абсорбция с предварительным насыщением тощего абсорбента. Анализ, распределения температур по высоте абсорберов на различных установках показал, что интенсивность нагрева абсорбента больше в верхней. и нижней частях аппарата, так как основное количество метана и этана поглощается вверху колонны, а на нижних тарелках происходит растворение бутанов и пентанов. Поэтому целесообразно максимальное количество тепла процесса растворения снять в промежуточных холодильниках, установленных в верху и в низу абсорбера. Однако схемы с промежуточными холодильниками имеют ряд недостатков наличие глухих тарелок в абсорбере, сложность точного выбора места ввода охлажденного абсорбента, низкие коэффициенты теплоотдачи. [c.217]

    Температуру плавления необходимо учитывать при выборе температуры абсорбции и условий хранения абсорбента. Смеси растворителей (в том числе водные растворы) имеют более низкую температуру плавления, что позволяет использовать растворители с высокой температурой плавления. [c.42]

    Из нижней части олонны 18 отводится бутановая фракция, которая циркулирует в системе установки в виде абсорбента. Выбор бутановой фракции в качестве абсорбирующего агента для выделения из газовой смеси углеводородов 2Сг—Сз обеапечивает возможность сокращения общей массы циркулирующего абсорбента. Одновременно сокращается расход тепла на нагревание и охлаждение абсорбента. При носледовательном выделении 3 насыщенного абсорбента этан-этиленовой и яро-(панчпропиленовой фракций для обогрева кубовых частей ректификационных колонн можно использовать водяной пар доступных параметров 0,2—0,5 МПа. [c.80]

    Наряду с селективностью решающую роль в процедуре выбора ифает емкость абсорбента. Селективность является качественной мерой, емкость абсорбента - количественной. Если абсорбент не обладает большой емкостью, т. е. способностью поглощать относительно большое количество избирательно извлекаемого компонента, то несмотря на его высокую селективность применение абсорбента может оказаться неэкономичным из-за необходимости иметь в системе разделения большое количество циркулирующего абсорбента. В качестве меры емкости абсорбента по отношению к поглощаемому веществу 1 выбирают обратное значение коэффициента активности при бесконечном растворении [c.29]

    Выбор типа аппарата. Для выбора типоразмера аппарата ориентировочно определяется поверхность теплообмена пропанового холодильника абсорбента для этого по данным [37, с. 31] принимается величина ее теплонапря-жения (теплового потока) =7500 Вт/м  [c.107]

    Выбор того или иного метода очистки от токсичных газов и паров производится с учетом конкретных условий производства. Экономичность очистки возрастает при использовании отходов производства в качестве очистных реагентов (абсорбента, адсорбента, катализатора), а также при регенерации ценных веществ из отходящих газов, например рекуперации паров бензина или других растворителей, регенерации ртути и других металлов и т. п. Как правило, концентрации примесей в промышленных выхлопах малы, а объемы очищаемых газов велики, ноэтому для их обработки сооружают сложные и громоздкие очистные установки, которые пока еще недостаточно рентабельны. [c.237]

    Результаты эксплуатации опытных установок щелочной очистки газа показывают, что по некоторым показателям более экономичен процесс сероочистки раствором КОН. По данным [2], скорость абсорбции этилмеркаптана 1,3 Н раствором NaOH практически равна скорости абсорбции 0,5 Н раствором КОН. Но вследствие отсутствия опыта эксплуатации установок, использующих абсорбент КОН, и равновесных и кинетических данных, необходимых для выбора рациональной схемы процесса и расчета аппаратов, в промышленных масштабах этот процесс не реализован. [c.36]

    Выбор того или иного процесса для осуществления перечисленных стадий осуществ яется для каждого ГПЗ индивидуально в зависимости от характеристик сырья и существующих потребностей в определенных продуктах. Например, очистка газа от кислых компонентов может происходить в два этапа очистка от НгЗ и СО2 растворами аминов практически без извлечения меркаптанов и очистка от меркаптанов растворами щелочи или адсорбцией на цеолитах. Той же цели можно достигать и в одну стадию при использовании физикохимических абсорбентов, таких как Укарсол или Экосорб , способных одновременно извлекать Н25, СО2 и сераорганические соединения, хотя в этом случае степень извлечения меркаптанов ниже, чем при защелачивании. [c.177]

    Давление газа относительно мало влияет на поглощение, но оказывает значительное влияние на растворение газа. При низком давлении поглотительная емкость растворителя настолько ниже емкости химического поглотителя, что использование принципа растворения неэффективно, так как требуется циркуляция большого количества абсорбента. С повышением давления поглотительная емкость растворителя растет, становится сравнимой и даже превосходит поглотительную емкость химического поглотителя. Выбор поглотителя поэтол1у определяется давлением абсорбции. Физические поглотители применяют только при высоком давлении. [c.114]

    Абсорбция. Возможны как физ. абсорбция, так и хемосорбция, а также их сочетание при использовании водных р-ров абсорбентов. Общие требования к абсорбентам высокая поглощающая способность, доступность, пожаро-и взрывобезопасность, малое давление паров, нетоксичность, хим. инертность к конструкц. материалам. В отдельных случаях допускается повыш. давление паров абсорбента, хотя это приводит к увеличению его расхода. Напр., при абсорбции жидким азотом Аг, СО и СН4, содержащихся в коксовом газе, газах конверсии метана или генераторных газах, выделяемый Н2 насыщается N2, образуя азотоводородную смесь, необходимую для синтеза ННз. При прочих равных условиях существенное преимущество при выборе абсорбента-его способность к регенерации, т.е. к обратному выделению поглощенных газов. Это требование обязательно при многократной циркуляции абсор- [c.464]

    На НПЗ и НХЗ абсорбция применяется в блоках газоразделения для выделения целевых компонентов из смеси углеводородов. Эффективность абсорбции зависит от температуры и давления, при которых проводится процесс, свойств газа и абсорбента, скорости движения абсорбируемого газа, количества подаваемого абсорбента. Повышение давления или уменьшение температуры в абсорбере способствуют лучшему извлечению компонентов. Однако, поскольку работа при повышенном давлении и пониженных температурах связана с дополнительными эксплуатационными затратами, выбор параметров должен определяться на базе технико-экономических расчетов. Абсорбционное извлечение углеводородов из смесей с большим и средним количеством извлекаемых компонентов проводится при давлении не выше 1,6 МПа. Если газ поступает на переработку с более высоким давлением, то абсорбция проводится пр атом павлении. [c.111]

    Для выбора оптимального соотношения потоков регенерирозан-ного абсорбента и оптимальной температуры охлаждаемого потока рассчитывались зависимости общих энергетических затрат на очистку ( Зг ) от доли и теипературы потока для заданных концентраций двуокиси углерода в очищенном газе, определяемые как сумма затрат на электроэнергию для перекачки абсорбента в верхнюю секцию абсорбера, на охладдающую воду и на пар для регенерации (рис. 3). Полученные на их основе оптимальные значения теипературы и доли охлаждаеиого потока в зависимости от остаточного содержания двуокиси углерода в очищенном газе приведены на рис. 4. [c.99]

    Выбор абсорбента зависит от свойств абсорбируемого газа. Углеводородные газы наилучшим образом извлекаются близкими им по строению и молекулярной массе жидкими углеводородами легкого бензина. Поскольку легкий абсорбент обладает высокой упругостью паров, он в значительной степени увлекается уходящим из абсорбера газом. СОбычно на абсорбционных установках применяют двухступенчатую абсорбцию основным абсорбентом служит бензиновая фракция, а затем выходящий из абсорбера газ промывается жидкостью тяжелого фракционного состава, например керосино-газойлевой фракцией, для извлечения из газа унесенного бензина. > [c.288]

    При выборе абсорбента необходимо стремиться к тому, чтобы по природе он был подобен разделяемому газу, так как при этом абсорбент обладает наибольшей растворяющей способностью к компонентам газовой с1к1еси. При абсорбции углеводородных газов обычно в качестве абсорбента принимают бензиновые или керосиновые фракции. При выборе абсорбента следует учитывать также его химическую стабильность, потери с сухим газом и ллияние качества абсорбента на производительность колонны. Чем ниже молекулярная масса абсорбента, тем меньшее его количество потребуется для получения заданного извлечения компонентов и, следовательно, тем выше может быть производительность колонны. Однако при больших скоростях газа в колонне и при более легком абсорбенте увеличиваются его потери с сухим газом. [c.138]

    Компоненты природных газов различаются также другими свойствами. Так, вода является полярным веществом. К слабо полярным веществам относится сероводород. (Вводимые в скважины и шлейфы метанол и гликоли также относятся к полярным веществам.) Углеводородные компоненты природного газа, а также азот и диоксид углерода относятся к неполярным веществам. Полярность компонецтов природных газов используется при выборе абсорбентов для обработки газа и ингибиторов гидратообразования. [c.24]

    Как правило, нестабильный конденсат I ступени сепарации содержит некоторое количество ингибиторов, применяемых для интенсификации дофши, борьбы с коррозией и гидратообразованием, и других примесей. Обработка такого продукта совместно с насыщенным абсорбентом вызывает ряд негативных явлений. В первую очередь отметим разложение ингибиторов при нагреве. Продукты разложения вызывают осмоление абсорбента и усиливают скорость коррозии в системе. В связи с этим выбор ингибиторов должен осуществляться с учетом всего цикла обработки газа — от скважин до магистрального газопровода. [c.195]

    Выбор температуры. Температура процесса осушки газа -один из основных факторов, определяющих техиико-экоио-мические показатели процесса абсорбционной осушки газа. Чем ниже температура газа, при прочих равных условиях, тем меньше его равновесная влагоемкость. Следовательно, для извлечения влаги из газа требуется меньший удельный расход циркулирующего абсорбента. Это, в свою очередь, оказывает существенное влияние на металло- и энергоемкость блока регенерации установок осушки газа. Однако допустимая температура контакта ограничивается вязкостью раствора. [c.69]

    Выбор качества и количества абсорбента. Показатели процесса осушки газа в значительной стеиени зависят также от качественных показателей (содержаипе в абсорбенте основного вещества, вязкости раствора, гигроскопичности п т.д.) п удельного расхода осушителя. Качественные показатели - основные факторы, определяющие точку росы газа иа выходе из абсорбера. [c.71]


Смотреть страницы где упоминается термин Абсорбент выбор: [c.28]    [c.35]    [c.231]    [c.101]    [c.307]    [c.96]    [c.30]   
Ректификационные и абсорбционные аппараты. Методы расчета и основы конструирования. Изд.3 (1978) -- [ c.136 ]

Процессы и аппараты химической технологии Часть 2 (2002) -- [ c.83 ]

Процессы и аппараты химической технологии Часть 2 (1995) -- [ c.83 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбенты

Выбор абсорбента и поддержание его высокой поглотительной способности



© 2025 chem21.info Реклама на сайте