Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидразина соли, определение

    Применение гидразинов для определения альдегидов ограничено несколькими факторами, главным образом, легкостью окисления гидразинов и использованием водных растворов реактивов, поэтому метод пригоден только для анализа водорастворимых альдегидов. Кроме того, соли гидразония имеют кислую реакцию и будут реагировать и с ацеталями, и с альдегидами. Эти трудности можно преодолеть, пользуясь диметилгидразином. [c.89]


    Окисление гидразинов солями меди (реактив Фелинга) и серебра при нагревании в водных растворах используется для их качественного определения. Количественный анализ простейших гидразинов также основан на окислении (сульфатом ртути, анодном и др.) [б1]. [c.67]

    Хорошие результаты получены при восстановлении смесью хлорида олова (И) и сернокислого гидразина [73—80]. Для восстановления желтой фосфорномолибденовой кислоты применяют также сернокислый гидразин. При определении фосфора в присутствии нитрат-ионов [76] и в быстрорежущих и нержавеющих сталях [77] для восстановления фосфорномолибденовой кислоты применяют сернокислый гидразин [94], а также аскорбиновую кислоту [78, 79], хлорид титана(III) [80], ферроцен [81], соль Мора [82—85]. Для определения фосфора в виде синей фосфорномолибденовой кислоты рекомендовано применение смешанного реагента, содержащего молибден(У) и молибден(У1) в отношении 2 3. [86]. [c.107]

    Соли ртути (I) [36] и гидроксиламин [35] окисляют взятым в избытке стандартным раствором соли железа (III) и ее избыток оттитровывают раствором Hg2(N03)2. V Этот метод непригоден для определения гидразина [35J. у [c.206]

    В титриметрическом анализе растворы солей гидразина применяют главным образом при потенциометрических определениях неорганических веществ [2—4]. Однако с сильными окислителями (перманганат, соли церия (IV)] сернокислый гидразин реагирует в нестехиометрических соотношениях. [c.261]

    Описан метод определения связанной кислоты в солях гидразина, основанный на превращении гидразина в азин при взаимодействии с ацетоном и титровании образовавшейся кислоты раствором едкого натра [514]. [c.144]

    Ход определения. 1 г пробы растворяют при нагревании в 10—15 мл соляной кислоты. Раствор окисляют небольшим количеством (3—4 мл) азотной кислоты. Затем добавляют 5 мл серной кислоты и жидкость выпаривают до выделения паров двуокиси серы. Остаток охлаждают, приливают 30—40 мл воды, нагревают до растворения солей, переносят в стакан емкостью 400—500 мл (электролизер) и разбавляют водой до 250 мл. Жидкость нагревают до 60—70° С и прибавляют 4 г гидразина (для восстановления железа). [c.296]

    Большинство весовых методов определения золота основано на легкости восстановления солей трехвалентного. золота до металла. Наиболее употребительными восстановителями являются сернистый газ [23], соль Мора [75], нитрит натрия [76, 77], щавелевая кислота [78], гидрохинон [79], соли гидразина [80],, формальдегид [81] и перекись водорода [82], Самым избирательным реактивом является нитрит натрия. Почти все перечисленные восстановители применяются для определения золота в солянокислых растворах точное соблюдение pH необходимо только в случае щавелевой кислоты. Солянокислый гидразин может быть использован также для осаждения золота из цианистых [83], а формальдегид и перекись водорода — из щелочных растворов. [c.130]


    Реакцией на гидроксиламин может служить синтез диметилглиоксима из диацетилмоноксима и гидроксиламина с последующим образованием его красной никелевой соли [19]. Если испытание на гидроксиламин проводят в его смесях с большим избытком гидразина, то большую часть последнего можно предварительно осадить при помощи салицилальдегида. Гидроксиламин конденсируется с формальдегидом, и продукт конденсации под действием перекиси водорода или персульфат-иона переходит в формгидроксамовую кислоту. Это соединение в слабокислых средах образует с ионом трехвалентного железа красный трис-комплекс [21]. В цветных реакциях гидразина и гидроксиламина с динитробензолами проявляются их восстановительные свойства. В отсутствие гидразина для определения гидроксиламина можно использовать салицилальдегид и ион двухвалентной меди при этом образуется внутрикомплексное соединение меди с салицилальдоксимом. При добавлении гидроксиламина к щелочному раствору 8-оксихинолина получается 5-амино-8-оксихинолин, окисляющийся в присутствии воздуха и конденсирующийся с другой молекулой 8-оксихинолина с образованием кислотно-основного индикатора индоксина. [c.301]

    Отгонка аммиака используется в широко известном методе определения азота в органических соединениях по Кьельдалю. В простейшем варианте этого метода пробу обрабатывают при нагревании концентрированной серной кислотой в присутствии солей ртути (катализатор), в результате чего органические соединения окисляются до СО2 и Н2О, а азот переходит в ЫН4Н504. После охлаждения к остатку добавляют раствор щелочи и отгоняют ЫНз в отмеренный объем титрованного раствора кислоты, а затем определяют избыток кислоты, не вошедшей в реакцию с аммиаком, и рассчитывают массу азота в пробе по формуле обратного титрования. Методом Кьельдаля можно определять азот в аминах, аминокислотах, алкалоидах и многих других азотсодержащих соединениях. Некоторые соединения можно проанализировать по методу Кьельдаля только после предварительного разложения или восстановления хлоридом олова (И) или цинковой пылью (азотсоединения, производные гидразина и т. д.) [c.215]

    В водных растворах гидразин восстанавливает иод до иодистого водорода, соли серебра и ртути — до металлов, соли меди — до ее закиси и т. д. Сам он при этом окисляется до свободного азота, но основной процесс обычно осложняется побочными реакциями. Полностью до N2 гидразин может быть окислен лишь в строго определенных условиях (например, иодом при pH = 77,2). Интересно, что его практически нерастворимое в воде двойное соединение с хромдихлоридом (УП1 5 доп. 66) состава СгС12-2М2Н4 очень устойчиво к действию окислителей, хотя обе его составные части являются восстановителями. [c.404]

    Биндон применяется в качестве аналитического реактива на первичные адшны [1, 2], нитросоедИнения [3] и гидразин [4], а в последнее время и для определения малых количест аминов при флотации калиевых солей [5, 6]. [c.8]

    Хотя известно, что бензальдегид реагирует с гидразином в щелочном растворе, давая желтый нерастворимый осадок бензальазина [1], и что последний при перегонке с паром в присутствии минеральных кислот гидролизуется, давая соли гидразина [2], до сих пор не было сделано попыток использовать эти свойства для извлечения остатков гидразина. Эта реакция практически протекает количественно, и ее можно использовать не только для извлечения гидразина, оставшегося в растворе при синтезе Ра-шига (№ 31), но и для определения и извлечения гидразина в присутствии аммиака или гидроксиламина. При разложении бензальазина и образовании солей гидразина можно регенерировать до 95% бензальдегида. [c.92]

    Для повышения устойчивости и воспроизводимости окраски растворов и увеличения надежности результатов определения молибдена вместо ЗпСЬ были рекомендованы различные восстановители тиомочевина [133], иодид калия в присутствии сульфита [96, 829], аскорбиновая кислота [183, 219, 1543], ацетон [183], сульфат гидразина [758, 1037], хлорид трехвалентного титана [325], соль Мора в присутствии пирофосфата [90] и другие вещества. [c.22]

    Метод комплексонометрического определения пятивалентного молибдена, предложенный Ласснер и Шарф [986], основан на добавлении избытка стандартизированного раствора комплексона III и его оттитровании при pH 4 раствором соли меди в присутствии 1-(2-пиридилазо)-2-нафтола в качестве индикатора. Титрование следует проводить в горячем растворе и при добавлении метанола вследствие малой растворимости соединения меди с индикатором при комнатной температуре в отсутствие метанола. Определению молибдена не мешают двадцатикратные количества вольфрама, если к раствору добавлена винная кислота. Шестивалентный молибден восстанавливают до пятивалентного состояния сульфатом гидразина. При многократном установлении конечной точки титрования абсолютная ошибка составляет 0,01 мл 0,05 М раствора комплексона III, что соответствует 0,095 мг Мо. [c.176]


    Титрование раствором соли гидразина. Определение r(Vl) и V(V) проводят методом титрования раствором сульфата гидразина в присутствии в качестве индикатора дифениламинсульфо-ната бария и катализатора OSO4 [998]. Удовлетворительные результаты для r(VI) получены лишь при добавлении V(IV). Мешают определению КОд-ионы. Погрешность определения не превышает 0,3—0,4%. [c.33]

    Виллард и Холл [1490] исследовали другие восстановители, как TI2(S04)3, HAsOa, Sb ls, KS N, соли гидразина и др. Эти методы оказались непригодными для точного определения кобальта. [c.114]

    N-Бромсукцинимид легко и количественно окисляет соли гидразина и различные его производные в среде разбавленной HgSOe при комнатной температуре [11, 12]. Прямым титрованием водным раствором N-бромсукципимида в присутствии метилового красного можно [И] определять микроколичества сернокислого гидразина, солянокислого фенилгидразина и фенилгидразин-п-сульфокислоты. Погрешность определения не превышает 2%. [c.95]

    На этой реакции основан [43] точный метод определения нитрита (а также гидразина и его солей) потенциометрическим титрованием раствора сернокислого гидразина в соляной кислоте раствором нитрита. При определении этим методом содержания NaNOj в медицинских препаратах [44] получаются хорошие результаты. Менее удовлетворительные результаты дает непрямой метод [45], основанный на прибавлении взятого в избытке гидразина к раствору нитрита и титровании неизрасходованного гидразина раствором I2. [c.265]

    Topoe количество высших окислов азота, у С 1 моль гидразина реагируют 2 моль NaNOj. На этой реакции основан метод прямого потенциометрического титрования солей гидразина [6] раствором NaNOg. Титрование проводят в 7—10%-ной соляной, 15—30%-ной хлорной, 10—12%-ной серной или 50%-ной фосфорной кислотах. При определении этим методом 0,1—100 мг соли гидразина получаются хорошие результаты даже в присутствии 100-кратных количеств нитратов и солей аммония. Определению мешают мочевина и гидроксиламин. [c.276]

    Медь (II). Медь (II) [в виде раствора Фелинга или комплекса меди (II) с триоксиглутаровой кислотой] применяют [35] для титриметрического определения редуцирующих сахаров, устанавливая конечную точку потенциометрическим [36], амперометрическим (с двумя поляризованными электродами [37—39]) или визуальньш [35] методами, например с использованием метиленовой синей как индикатора [40]. Растворы соли меди (II) пригодны для потенциометрического титрования производных гидроксиламина и гидразина на этом основано непрямое определение карбонильных групп [41]. [c.284]

    Определение гидразина [62]. К Ю мл раствора, содержащим 0,1 — 1 мг соли гидразина, прибавляют на каждые предполагаемые 0,1 мг соли по 0,5 мл 5%-ного раствора поташа и по 1 мл раствора иода в хлороформе (0,3 г I2 в 250 мл H I3). Взбалтывают 2 мин и слой хлороформа удаляют. Водную фазу 3 раза промывают взбалтыванием с порциями H I3 по 10 мл для удаления следов иода. Добавляют 3 мл 2 М раствора ацетата натрия, окисляют иодид бромной водой, избыток брома восстанавливают муравьиной кислотой. Добавляют 5 мл ацетатного буферного раствора (рНл 3,5) и избыток 10%- ого раствора KI. Выделившийся иод титруют М раствором тиосульфата. Схема протекания реакций  [c.53]

    Определение гидразина. К Ю мл приблизительно 0,1 М раствора гидразина или его соли добавляют раствор из 0,5 г НаНСОз в 15 мл воды, кристаллик К1 и крахмал. Жидкость медленио титруют 0,05 М раствором хлора1М ина Т до появления устойчивой голубой окраски  [c.126]

    Предложены бромистые аналоги хлораминов — бромамин Т [317] и дибромамин Т [318], а также серебряная соль хлорам.ина Т [319J. Эти реагенты рекомендуют для определения некоторых восстановителей (As +, Sb +, Fe +, Т1+, J-), гидразина, аскорбиновой кислоты, тиокарбамида и др. Бромзамещенные не имеют существенных преимуществ перед хлораминами. [c.128]

    Определения с помощью солей гидразина в качестве титранта называют гидразинометрией. [c.136]

    Определение хлората. К Ю мл анализируемого приблизительно 0,01—0,02 М раствора хлората добавляют 1 г КВг и 20 мл концентрированной H I. Через 5 мин вводят 10 мл 10%-ного раствора KI, затем добавляют насыщенный раствор NaHGOs (не содержащий примеси NaaGOs) до рН=7—7,4. Титруют 0,02 М раствором соли гидразина в присутствии крахмала до исчезновения синей окраски- [307]  [c.137]

    Инициаторами этой группы являются смеси окислителя и восстановителя эти смеси выбираются таким образом, чтобы получить свободные радикалы, пригодные для инициирования полимеризации путем реакций переноса электрона или группы, аналогичных рассмотренным в гл. И1. Они особенно полезны в водных растворах, хотя определенные комбинации их предложены и для использования в неводных растворителях. В 1946 г. Бэкон [33] описал каталитические свойства смесей персульфатов с несколькими восстановителями типа металлов и их солей, гидразина и гидроксиламина, тиолов, сульфитов, тиосульфатов и многоатомных фенолов. В последующие несколько лет появилось много исследований, и достижения в этой области были обобщены в 1955 г. тем же Бэконом [34]. Он классифицировал инициаторы по их главному окисляющему компоненту и рассмотрел поведение систем, основанных на перекиси водорода, персульфатах, диацилперекисях, гидроперекисях, кислороде и некоторых других окислителях. Использовались также и значительно более сложные трехкомпонентные системы [35, 36]. Они обычно содержат один из упомянутых выше окислителей, соль тяжелого металла и восстановитель, например сахар, тиол, оксикислоту или сложный эфир, бензоин или тиосульфат. При использовании солей металлов типа стеаратов или нафте- [c.408]

    Восстановление диазосоединений. Восстановление солей диазония приводит к образованию производных гидразина NH2NH2. Например, если в определенных условиях восстанавливать хлористый фенилдиазоний, то будет получен фенилгид-разин  [c.177]

    Автор находит, что наиболее благоприятными условиями определения селена являются следующие. 20 г измельченной руды обрабатывают на холоду 125 мл азотной кислоты (пл. 1,4г/сл , прибавляя ее. небольшими порциями в продолжение 10 мин. Затем нагревают до кипения и по охлаждении вводят 60 мл серной кислоты (пл. 1,84 г см , причем происходит кристаллизация сернокислых солей. Выпаривают до появления паров серной кислоты, охлаждают, разбавляют 300 мл воды, к разогревшемуся при этом раствору прибавляют 20 мл соляной кислоты (пл. 1,19° С) и нагреваю до растворения солей. Разбавив раствор до 400 мл, отфильтровывают нерастворившуюся породу, нагревают до 60° С, пропускают 10 мин SOj, прибавляют 3 мл 10 %-ного раствора гидразина и оставляют стоять до охлаждения. Затем отфильтровывают загрязненный другими элементами селен через небольшой плотный фильтр, который вместе с осадком переносят в коническую колбу и обрабатывают 10 мл соляной и несколькими каплями азотной кислоты, нагревая при температуре водяной бани и взбалтывая до распадения фильтра. Разбавляют водой, фильтруют и обрабатывают рартвор 2 мл раствора гидразина. По охлаждении до комнатной температуры отфильтровывают очищенный селен через взвешенный фильтровальный тигель, промывают водой, сушат в течение получаса при 105° С и взвешивают. Доп. ред.  [c.391]


Смотреть страницы где упоминается термин Гидразина соли, определение: [c.282]    [c.260]    [c.224]    [c.64]    [c.123]    [c.258]    [c.43]    [c.51]    [c.14]    [c.130]    [c.174]    [c.49]   
Объёмный анализ Том 2 (1952) -- [ c.194 ]




ПОИСК







© 2025 chem21.info Реклама на сайте