Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Периодические развитие

    В начальный период развития нефтяной промышленности разделение нефти на фракции осуществлялось простой перегонкой и главным образом в кубах периодического действия. В последующем для повышения четкости разделения нефти стали применять дефлегмацию паров, в связи с переработкой больших объемов нефти перешли на использование непрерывных процессов разделения. [c.13]


    В соответствии с закономерным развитием электронных структур атомов характер химической связи (а следовательно, структуры и свойств) однотипных соединений в периодах и группах периодической системы изменяется закономерно. На примере бинарных соединений элементов второго периода [c.246]

    Развитие физики и химии трансурановых элементов непосредственно основывается на периодическом законе Д. И. Менделеева. В свою очередь исследования в области трансурановых элементов не только углубляют сведения о строении и свойствах атомных ядер, но также расширяют наши представления о структуре периодической системы. Несмотря на огромные достижения науки за прошедшее столетие, система Д. И. Менделеева в принципах построения не претерпела сколько-нибудь заметных изменений, развитие представлений о периодической системе по сути дела коснулось лишь расширения ее нижней границы. [c.665]

    Технический прогресс требует создания новых, усовершенствованных аппаратов (установок), которые позволили бы перейти от периодической к непрерывной обработке материала. Переход от периодических процессов к непрерывным представляет суш,е-ственный элемент развития не только химической, но и других областей промышленности. [c.14]

    Нестационарным элементом процесса совсем другого типа является регенератор. В металлургии регенераторы применяются уже давно, в химической же промышленности они используются только около 40 лет (регенераторы Френкеля). Для регенераторов характерен периодический способ действия, причем цикл их работы состоит из последовательных нестационарных периодов. Так, например, в случае применения регенераторов для получения кислорода (рис. 14-3) в первом периоде работы через регенератор (колонна со специальной металлической насадкой) пропускается холодный воздух, поступающий из разделительной колонны. Температура насадки приблизительно через 3 мин становится равной температуре газа. Во втором периоде через насадку регенератора в противоположном направлении проходит сжатый атмосферный воздух. При этом воздух охлаждается, а насадка нагревается, затем цикл повторяется. Это простое по виду устройство требует, однако, решения целого ряда технических проблем. Его внедрение обусловило быстрое развитие кислородного производства [13], так как создало возможность постройки кислородных заводов большой мощности. [c.302]


    На первом этапе развития каталитического крекинга на заводах сооружались установки с неподвижным слоем катализатора в реакторах периодического действия. При работе необходимо часто переключать их с одной операции (крекинга) на другую (регенерацию). Такая система получила название крекинга с неподвижным слоем катализатора. [c.6]

    Кинетика реакции на поверхности катализатора. Однородная поверхность. В адсорбционной теории кинетики контактных реакций, предложенной Лангмюром и развитой затем Хиншельвудом и другими учеными, предполагается, что реакция проходит на однородной (или периодически неоднородной) поверхности катализатора между молекулами, адсорбированными в мономолекулярном слое, причем взаимное влияние молекул отсутствует. [c.278]

    В случае последовательных реакций, когда целевой продукт одновременно является полупродуктом, для получения максимального выхода нужно использовать реактор периодического действия или реактор полного вытеснения. Если необходимо интенсивное перемешивание реагентов, например для улучшения теплообмена или развития межфазной поверхности, то процесс можно проводить в каскаде реакторов полного перемешивания при незначительном снижении выхода. [c.342]

    Важная роль трех основных стадий реакции (инициирование, развитие и обрыв) как факторов, определяющих скорость реакции, рассматривается ниже. Назначение стадии инициирования заключается в образовании активных центров, каждый из которых возбуждает периодически повторяющиеся циклы реакции. В основном общая скорость окисления является функцией числа активных центров, образующихся в единицу времени (скорость инициирования Г ) из числа повторений каждого цикла. Последний фактор представляет собой кинетическую длину цепи Ь). Точно так же, общая скорость окисления определяется произведением скорости полимеризации на длину цени [c.288]

    Несмотря на то, что одной из главных тенденций развития современной технологии является замена периодических процессов непрерывными, этого не следует делать без глубокого технологического анализа. [c.31]

    СТРОЕНИЕ АТОМА. РАЗВИТИЕ ПЕРИОДИЧЕСКОГО ЗАКОНА [c.57]

    Глава ///. Строение атома. Развитие периодического закона [c.58]

    Среди свойств, положенных в основу построения первой периодической системы, основными были масса атома и его способность взаимодействовать с атомами других элементов. Предшествующее этому развитие науки показало, что атомы различных элементов имеют различную массу. Например, атом водорода - самый легкий из всех, атом кислорода примерно в 16 раз тяжелее атома водорода, атом серы примерно в 2 раза тяжелее атома кислорода (или в 32 раза тяжелее атома водорода). Сравнивая таким образом элементы между собой, каждому атому можно приписать атомную массу. [c.124]

    Развитие цепи — периодическое повторение группы реакций. Цепью называется последовательность идущих друг за другом элементарных актов — циклов регенерации. Так, иод влиянием инициирующей реакции при образовании H I возникает цепь превращений С1 Н -> С1 Н -> С1. Число таких циклов от момента зарождения цепи до ее обрыва называется длиной цепи, т. е. это — число молекул исходного вещества, прореагировавших в результате одного акта зарождения цени. [c.351]

    В этой главе мы исследуем закономерности, обнаруживаемые во взаимосвязи между физическими и химическими свойствами элементов и их соединений. Эти закономерности приводят непосредственно к важнейшей схеме классификации материи-периодической системе элементов. Эрнсту Резерфорду, который однажды сказал, что существуют два типа науки — физика и коллекционирование марок,-периодическая система элементов могла казаться доведенным до совершенства альбомом марок. Если бы данная глава была последней в нашей книге, его точка зрения представлялась бы оправданной. Однако сведение всех элементов природы в таблицу периодической системы является лишь началом развития химии, а отнюдь не его концом. Установив схему классификации элементов, мы должны найти способ ее объяснения на основе рассмотрения свойств электронов и других субатомных частиц, из которых построены атомы. Такое объяснение-задача следующих глав. Но прежде чем обратиться к теоретическому описанию природы, надо сначала узнать, что она представляет собой в действительности. [c.303]

    Виброобработка — процесс увеличения сети трещин в ПЗП и изменения физико-химических свойств пласта и насыщающих флюидов генерированием виброударных волн на вибраторе, опускаемом к обрабатываемому интервалу. Высокоамплитудные волны давления генерируются при периодическом перекрытии потока рабочей жидкости. Чередующиеся перепады давления (иногда с частотой до 500 Гц) ведут к развитию трещин в ПЗП. [c.7]


    Периодические процессы в химических печах применяют для получения малотоннажных продуктов, из-за простоты конструкции печей (тигельные печи для получения специальных сортов стекла, светящихся пигментов, ультрамарина и т. д.), а также когда невозможно при данном уровне технического развития непрерывное получение целевого продукта (сталь, медь, кокс и т. п.). [c.113]

    Наиболее распространенным способом расчета таких аппаратов является исследование свойств двухфазной системы в опытах по периодическому расслаиванию для различных концентраций дисперсной фазы, высоте столба смеси и других параметров. Пол-, ный анализ периодического расслаивания был представлен в работе [40]. На основании экспериментального определения скорости осаждения определялись свойства суспензии, исходя из которых возможно предсказание нроцесса расслаивания. В основе предложенной методики лежали следующие допущения система содержит частицы одного размера скорость осаждения зависит только от концентрации частиц в процессе осаждения отсутствует агломерация частиц. Распространение этого подхода на непрерывное разделение развито в [41]. [c.293]

    Технологический цикл аппарата, агрегата или системы — это последовательность операций от начала выпуска произвольной А -й партии продукта до начала выпуска его следующей партии +1. Цикл может иметь либо линейную структуру (простую последовательность операций), либо разветвленную (например, время окончания реакции зависит от результатов аналитического контроля). Расписание работы оборудования периодического действия принято изображать в виде временных графиков (рис. 9.1). Каждому аппарату схемы соответствует прямая линия, а стадия технологического процесса представляется отрезком прямой, длина которого соответствует продолжительности стадии. Отрезки располагаются по соответствующим прямым, а их взаимное расположение при фиксированном начале отсчета обеспечивает необходимую информацию о развитии процесса во времени. [c.521]

    Открытие периодического закона и создание периодической системы химических элементов завершили развитие атомистических представлений в XIX в. Однако при всей своей огромной значимости периодический закон и система элементов тогда представляли лишь гениальное эмпирическое обобщение фактов их физический смысл, глубинная сущность долгое время оставались нераскрытыми. От-крьпие периодического закона подготовило наступление нового этапа — изучения структуры атомов. Это в свою очередь дало возможность глубже выяснить природу взаимосвязи и качественного различия элементов и объяснить закономерности периодической системы. [c.7]

    JI В начальный период развития промышленного каталитического крекинга сооружались установки с реакторами периодического действия со стационарным слоем катализатора (процесс Гудри). На таких установках реакторы переключаются через короткие промежутки времени с одной операции (крекинга) на другую (регенерацию). Эта система получила наименование крекинга с неподвижным катализатором. [c.6]

    На первом этапе развития промышленного каталитического крекинга на заводах применялись установки только первой группы (установки Гудри). Когда производство высокооктановых авиационных и автомобильных бензинов начало принимать крупные размеры, системы крекинга с реакторами периодического действия довольно быстро стали вытесняться более экономичными и менее сложными системами крекинга с циркулирующим катализатором. [c.94]

    Первоначально развитие крекинга как надежного промышленного процесса шло довольно различными путями, но по направлению к общей цели. За начало развития процессов крекинга углеводородных топлив принимают 1865 г., когда Юцг перегонял сланцевое масло с тем, чтобы вызвать частичный пиролиз при перегонке. Бентон в 1887 г. прокачивал топливо под давлением 20 атм через ряд трубок в нагретой нечи и получал углеводороды более легкие, чем те, которые использовались в качестве сырья. Регулирующий клапан находился в конце змеевика печи, но в 1899 г. Дьюар и Редвуд (Dewar and Redwood) внесли усовершенствование, в результате которого была осуществлена свободная связь между перегонным кубом п конденсатором. Вильсон отмечает, что Пальмер (ам. патент 1. 187. 380, 1916) первым установил, что стадия нагрева может быть совершенно независимой от стадии дистилляции [66]. О начальных этапах развития процессов крекинга можно прочесть в различных работах [67, 68]. Производство крекинг-бензина в больших масштабах впервые было налажено Бартоном (Burton) в 1912 г. [69—72]. Использовалась периодическая перегонка в горизонтальных цилиндрических кубах (температура процесса около 400° С и давление — от 5 до 7,0 кГ/см ). [c.303]

    После утверждения атомно-молекулярной теории важиппиим событием в химии было открытие периодического зако1)л. Э о открытие, сделанное в 1869 г. гениальным русским ученым Д. М Менделеевым, создало новую эпоху в химии, определив пути ес р. Зви-тия на много десятков лет вперед. Опирающаяся иа периодический закон классификация химических злсмеитов, которую Ме1 делеев выразил в форме периодической системы, сыграла очень важную роль в изучении свойств химических элементов и дальнейшем развитии учения о строении вещества. [c.47]

    Значение периодической системы. Псриолическая система , 1емснтов оказала большое влияние на последующее развитие химии. Она не только была первой естественной классификацией химических элементов, показавшей, что они образуют стройную систему и находятся в тесной связи друг с другом, но и явилась могучим орудием для дальнейших исследований. [c.54]

    Чрезвычайно характерные явления представляют собою грязевые вулканы среди моря, известные как в Каспийском, так и Азовском морях в прибрежных зонах, тяготеющих к областям развития сухопутных грязевых сопок. Выступающие иногда над поверхностью воды конусы таких вулканов образуют острова Бакинского архипелага Лось, Обливной, Дуванный, Свиной и др. Один из таких островов — Кумани, — впервые описанный еще в 1861 г. Абихом, периодически.появляется и снова исчезает, что объясняется очередными выбросами сопочной грязи и смывом ее морем. Кроме того, встречаются и подводные вулканы в полном смысле этого слова, не выступающие над водной поверхностью и опознаваемые лишь по косвенным проявлениям или обнаруживаемые геофизическими методами. Такой вулкан имеется, например, у Биби-Эйбатской бухты. [c.122]

    Тенденции развития центрифуг периодического действия состоят в развитии машин целевого иазначения (герметизированных, взрыво-защищенных, со съемными роторами, с устройствами для регенерации фильтрующих перегородок, с приспособлениями для предварительного разгона поступающей в ротор суспензии и т. п.) внедрении центрифуг со сдвоенным ротором, как менее металло- и энергоемких уменьшении числа центрифуг с ручной выгрузкой осадка и перевода их на автоматический режим работы. [c.332]

    В настоящее время в промышленности применяют в основном периодическую диафильтрацию. Это объясняется периодичностью процессов получения тех продуктов, которые затем подвергают очистке диафильтрацией. Развитие мембранной техники и технологии позволяет рассчитывать на то, что в ближайшие годы диафильтрация найдет применение в нрупнотоннажных непрерывных химических производствах. Очевидно, что в таких производствах будет более предпочтительна непрерывная диафильтрация. [c.245]


Смотреть страницы где упоминается термин Периодические развитие: [c.30]    [c.56]    [c.56]    [c.66]    [c.88]    [c.100]    [c.110]   
Учебник общей химии 1963 (0) -- [ c.159 , c.162 ]




ПОИСК







© 2024 chem21.info Реклама на сайте