Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновское испускание

    Если осуществляется переход электрона с какой-то внешней электронной оболочки на вакансию внутренней оболочки, то при этом может происходить испускание кванта рентгеновского излучения. Это так называемая рентгеновская флуоресценция. Так, например, при А -захвате по схеме, показанной на рис. [c.138]

    В случае РФС наблюдаемая полуширина линии (полная ширина на половине высоты) значительно вьппе, чем в случае УФС. Фотоионизация электронов оболочки приводит к возбужденным состояниям, время жизни которых значительно короче, чем в случае УФС, поскольку время жизни пропорционально —энергии фотоионизационного перехода. Данные по поглощению и испусканию рентгеновских лучей [33] показывают, что присущая внутренним атомным уровням щирина линий снижается с уменьшением атомного номера и может быть порядка [c.335]


    N— линия N рентгеновского спектра (испускания) [c.273]

    Термин фотохимия используется достаточно широко. Хотя фотохимия в основном рассматривает химические превращения при поглощении света, ряд физических процессов, не включающих каких-либо суммарных химических изменений, также относятся к области фотохимии например, такие процессы, как флуоресценция (когда свет испускается образцом, поглотившим излучение) или хемилюминесценция (когда продуктом химической реакции является излучение света), должны рассматриваться как фотохимические. Слово свет также используется достаточно произвольно, поскольку в процессах, идентифицируемых как фотохимические, участвует излучение гораздо более широкого диапазона длин волн, чем видимая область. Длинноволновый предел, видимо, располагается в ближней инфракрасной области (около 2000 нм), а рассматриваемый диапазон простирается далеко в вакуумный ультрафиолет (см. примечание на с. 179) и лишь формально ограничивается длинами волн, при которых излучение становится заметно проникающим (рентгеновское излучение). Важным вопросом фотохимии является механизм участия возбужденных состояний атомов и молекул в изучаемых процессах. Очевидно, что изучение процессов поглощения или испускания света является делом спектроскописта в той же мере, что и фотохимика, и последний должен иметь по крайней мере общие знания в области спектроскопии. В то же время фотохимику [c.11]

    Информацию о структуре вещества получают на основании изучения его физических и химических свойств. Особую роль при изучении структуры играют исследования спектров поглощения и испускания, дифракции различных излучений (рентгеновских, электронных, нейтронных лучей), магнитных и электрических взаимодействий (магнитной восприимчивости и проницаемости, дипольных моментов и поляризации), механических, тепловых, электрических и других характеристик (плотности, вязкости, теплот фазовых переходов, теплот растворения, электропроводности и др.). [c.169]

    В конце XIX и начале XX вв. появились экспериментальные доказательства сложной структуры атома фотоэффект — явление, когда при освещении металлов с их поверхности испускаются носители электрического заряда (см. разд. 2.2.3) катодные лучи — поток отрицательно заряженных частиц — электронов в вакуумированной трубке, содержащей катод и анод рентгеновские лучи — электромагнитное излучение, подобное видимому свету, но с гораздо более высокой частотой, испускаемое веществами при сильном воздействии на них катодных лучей радиоактивность — явление самопроизвольного превращения одного химического элемента в другой, сопровождающееся испусканием электронов, положительно заряженных частиц, других элементарных частиц и рентгеновского излучения. Таким образом было установлено, что атомы состоят [c.37]


    Попадающие на кристалл быстрые электроны выбивают электроны из внутренних оболочек атомов, на освободившиеся орбитали переходят электроны из вышележащих уровней это сопровождается испусканием квантов рентгеновского излучения. Так, в металлическом натрии на освободившееся место в оболочке 2р может провалиться  [c.273]

    Строение молекул изучают физическим и химическим методами. Из физических свойств наибольшее значение имеют погло-ш,ение и отражение различных излучений (рентгеновские, электронные, нейтронные лучи), спектры поглощения и испускания широкого диапазона частот, магнитные и электрические взаимодействия (магнитная восприимчивость и проницаемость, электрические моменты диполей и поляризация), механические, тепловые, электрические и др. Для заключения о строении вещества сопоставляют информацию, полученную разными методами. Рассмотрим некоторые физические методы исследования. [c.63]

    Важнейшей особенностью рентгеновских спектров является монотонное увеличение частот для аналогичных линий испускания или краев поглощения с ростом порядкового номера элемента согласно закону Мозли  [c.229]

    При исследовании рентгеновских лучей, испускаемых антикатодами, сделанными из различных металлов, наблюдается подобие спектров испускания этих металлов. Чем больше атомный вес металла, из которого сделан антикатод, тем больше длина волны таких [c.18]

    Развитие экспериментальных исследований, особенно в области физики, в конце XIX и начале XX в., привело к ряду важных открытий (например, открытие радиоактивности элемента), доказавших сложную природу атома и определивших дальнейшие пути изучения его внутреннего строения. Открытие явления радиоактивности подтвердило наличие в атомах более простых частиц и возможность превращения атомов одних элементов в атомы других. Был открыт электрон и связанный с ним ряд явлений, как, например, поток свободных электронов в вакууме, возбуждение рентгеновских лучей при торможении потока электронов, испускание электронов накаленными телами (термоэлектронная эмиссия), фотоэлектрический эффект, давление света и др. [c.10]

    Захват К- или -электрона вызывает последующую перестройку всей электронной оболочки атома н сопровождается испусканием кванта рентгеновских лучей. [c.381]

    РЕНТГЕНОВСКИЕ ЛУЧИ — электро магнитные колебания весьма малой длины волн, возникающие при воздействии на вещество быстрыми электронами. Р. л. открыты в 1895 г. В. Рентгеном. Волновая природа Р. л. установлена в 1912 г. М. Лауэ, открывшим явление интерференции Р. л. в кристаллах. Это открытие явилось основой развития рентгеноструктурного анализа. Р. л. невидимы для глаза, обладают способностью вызывать яркую видимую флюоресценцию в некоторых естественных и в искусственно изготовляемых кристаллических веществах, они действуют на фотоэмульсию и вызывают ионизацию газов. Этими свойствами Р. л. пользуются для обнаружения, исследования и практического использования Р. л. Различают два типа Р. л. тормозное и характеристическое излучение. Тормозное излучение возникает при попадании электронов на антикатод рентгеновской трубки оно разлагается в сплошной спектр. Характеристические Р. л. образуются при выбивании электрона из одного из внутренних слоев атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внен)не-го слоя. Они обладают линейчатым спектром, аналогичным оптическим спектрам газов, с той лишь разницей, что структура характеристического спектра, в отличие от оптического спектра газов, не зависит от вещества, дающего этот спектр. Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в периодической системе элементов Д. И. Менделеева весь его характеристический рентгеновский спектр смещается в сторону более коротких волн. Другой особенностью характеристических спектров является то обстоятельство, что каждый элемент дает свой спектр независимо от того, возбуждается ли этот элемент к испусканию в свободном состоянии или в химическом соединении. Это свойство является основой рентгеноспектрального йпализа. Р. л. широко используются в науке и технике. Высокая про- [c.213]

    Внешний фотоэффект — испускание электронов под действием светового, у-, рентгеновского и других излучений. [c.184]

    Поглощение и испускание видимых, УФ и рентгеновских лучем (колебания атомов) [c.277]

    Если один из двух уровней, скажем 2 принадлежит непрерывной области энергии, соответствующей диссоциации или ионизации, то все уровни из системы Е , расположенные вблизи уровня Ей могут его возмущать. При этом некоторые уровни будут сдвигать его вверх, другие — вниз. В результате вместо уровня Ei будет слегка диффузный уровень, как это показано на рис. 102, б. Смешивание волновых функций этих двух состояний означает, что если система переводится в состояние 1, то она очень скоро приобретает свойства состояния Яг, т. е. произойдет диссоциация или ионизация. Приблизительно ситуацию можно передать словами, что происходит безызлучательный переход из дискретного состояния в непрерывное (с той же энергией), что приводит к распаду молекулы. Такие процессы носят название процессов Оже по имени исследователя, впервые открывшего это явление в рентгеновской области. Он обнаружил, что один квант рентгеновского излучения может вызвать испускание двух фотоэлектронов. При этом один из них испускается в результате обычного фотоэффекта например, с /С-оболочки), а другой — сразу же за первым вследствие такого безызлучательного перехода (поскольку Х-уровень, на который атом переходит после первой стадии, перекрывается непрерывной областью энергии, соответствующей удалению электрона с -оболочки образовавшегося иона). [c.179]


    Дж. Дж. Томсону удалось показать, что отрицательный электрический заряд, удаляющийся с цинковой пластинки под действием ультрафиолетового излучения, состоит из электронов. Испускание электронов под действием ультрафиолетового или рентгеновского излучения называется фотоэлектрическим эффектом. Электроны, отдаваемые металлической пластинкой, называются фотоэлектронами по своему характеру они не отличаются от других электронов. [c.66]

    При электронном захвате внеш. электроны в атоме (с более высоких по энергии оболочек) переходят на вакантные места внутр. электронов. Энергия, отвечающая переходу, может испускаться в виде характеристич. рентгеновского излучения. Часто, однако, энергия возбуждения атома не испускается в виде излучения, а непосредственно передается одному или неск. орбитальным электронам. Если полученная электронами энергия выше энергии их связи в атоме, наблюдается испускание оже-электронов, к-рые, в отличие от Р"-частиц, имеют дискретные значения энергии  [c.162]

    РАДИОНУКЛИДЫ, нуклиды, ядра к-рых радиоактивны. По типам радиоактивного распада различают а-Р., -P., Р., ядра к-рых распадаются по типу электронного захвата, и Р., ядра к-рых подвержены спонтанному делению (см. Радиоактивность). Испускание радиоактивными ядрами а- и -частиц, а также электронный захват обычно сопровождаются испусканием рентгеновского или у-излучения, поэтому большинство Р. представляет собой источники электромагн. излучения. Напр., источником у-излучения являются ядра -радиоактивного °Са, широко используемого в т. наз. кобальтовых пушках и др. радионуклидных приборах. Число чистых Р., при распаде ядер к-рых испускается только корпускулярное а- или -излучение, не сопровождаемое электромагн. излучением, невелико. К чистым -излучате-лям относятся Т ( Н), " С, Р и нек-рые др. [c.170]

    Природа взаимодействия столь различающихся по энергии квантов с веществом принципиально неодинакова. Так, излучение уквантов связано с ядерными процессами, излучение квантов в рентгеновском диапазоне обусловлено электронными переходами во внутренних электронных слоях атома, испускание квантов УФ- и видимого излучения или взаимодействие вещества с ними — следствие перехода внешних валентных электронов (сфера оптических методов анализа), поглощение ИК- и микроволновых квантов связано с переходом между колебательными и вращательными уровнями молекул, а излучение в ра-диоволновом диапазоне обусловлено переходами с изменением ориентации спинов электронов или ядер атомов. Для решения разнообразных задач наибольшее значение имеют спектральные методы анализа, оперирующие с излучением рентгеновского, оптического, ИК- и радиоволнового диапазонов. В данном практическом руководстве по физико-химическим методам анализа рассматриваются оптические методы, которые традиционно делятся па оптическую атомную и оптическую молекулярную спектроскопию. В первом случае аналитические сигналы в области спектра от 100 до 800 нм являются следствием электронных переходов в атомах, во втором — в молекулах. [c.7]

    До сих пор предполагалось, что рентгеновское испускание и поглощение связаны с одиоэлектронными переходами между однократно ионизированными состояниями. Однако в спектре испускания имеются линии, которые нельзя объяснить такими переходами [6]. Эти линии получили название сателлитов предполагается, что они соответствуют переходам в многократно ионизированных атомах, возникающих в результате либо эффекта Оже, либо пер- [c.120]

    Как правило, полоса рентгеновского испускания соединений с полупроводниковыми свойствами или изоляторов наблюдается при меньшей энергии, чем полоса испускания соответствующего металла. С другой стороны, край поглощения обычно смещен к более высоким энергиям. Согласно эмпирическому правилу Кунцля [24], величина этого смещения пропорциональна степени окисления эле- [c.125]

    Радиоволны, инфракрасный, видимый и ультрафиолетовый свет, рентгеновские лучи и гамма-излучение представляют собой электромагнитные волны с различной длиной волны. Скорость света, с = 2,9979-10 ° см с , связана с его длиной волны X и частотой V соотношением с = Ху. Волновое число у-это величина, обратная длине волны, V = 1/Х. Все нагретые тела излучают энергию (излучатель с идеальными свойствами дает излучение абсолютно черного тела). Планк выдвинул предположение, что энергия электромагнитного излучения квантована. Энергия кванта электромагнитного излучения пропорциональна его частоте, Е = км, где / -постоянная Планка, равная 6,6262 10 Дж с. Выбивание электронов с поверхности металла под действием света называется фотоэлектрическим эффектом. Квант света называется фотоном. Энергия фотона равна /IV, где V-частота электромагнитной волны. Зависимость поглошения света атомом или молекулой от длины волны, частоты или волнового числа представляет собой спектр поглощения. Соответствуюшая зависимость испускания света атомом или молекулой является спектром испускания. Спектр испускания атомарного водорода состоит из нескольких серий линий. Положения всех этих линий точно определяются одним общим соотношением-уравнением Ридберга [c.375]

    Х-гау (emission) линия рентгеновского спектра (испускания) zero 1. СП. нулевая линия, начало (спектральной) полосы 2. нейтральная ось [c.274]

    Если рентгеновские спектры испускания, поглощения и флуоресценции были известны и стали применяться еще в первой половине нашего века, то новые методы анализа и исследования веществ, которые можно условно объединить под общим названием — методы фотоэлектронной спектроскопии, разрабатывались лищь в 50-х и 60-х годах параллельно в СССР, Швеции, Англии и США. Их применение в химии началось в конце 60-х, а соответствующие серийные приборы появились лишь в 70-х годах и постоянно совершенствуются. [c.134]

    Спектральный анализ — физический метод качественного и количественного анализа веществ, основанный на изучении их спектров, подразделяющихся на спектры испускания (э.миссионный), поглощения (абсорбционный), комбинационного рассеяния света, люминесценции, рентгеновские. [c.43]

    Источником рентгеновского излучения, используемым в рентгенофазовом и рентгеноструктурном анализе, обычно является рентгеновская трубка. В рентгеновской трубке поток электронов, испускаемый вольфрамовой спиралью (катодом), ускоряется из-за большой разности потенциалов между к атодом и анодом (несколько десятков киловольт, кВ) и ударяется об анод. При этом происходят два основных процесса - торможениа электронов (с одновременным возбуждением тепловых колебаний, т.е, нагревом анода и испусканием рентгеновских квантов, дающих сплошной спектр) и ионизация атомов (удаление электронов с внутренних и внешних электронных оболочек атомов). За счет последующих электронных переходов происходит излучение рентгеновских квантов, дающих линейчатый, или характеристический спектр, вид которого определяется материалом анода. [c.6]

    Как и при позитронном распаде, электронный захват не сопровождается изменением массового числа, а у дочернего элемента заряд ядра понижается на единицу. Вновь образующийся элемент расположен в Периодической системе на одну клетку левее по сравнению с исходным. Наиболее распространен захват электрона из ближайшей к ядру /С-оболочки, реже встречается захват из Ь- и более дальних оболочек. Соответственно обозначению электронной оболочки захват называют /С-захватом, --захватом и п. Оставшееся свободное место на соответствующих оболочках ганимает другой электрон, перескакивающий с более высокого энергетического уровня. Перескок сопровождается испусканием кванта рентгеновского излучения. При переходах на /С-слой возникают рентгеновские излучения /С-серии и т. д. Этот процесс часто бывает единственным наблюдаемым эффектом происшедшего захвата электрона. [c.399]

    Оптическими называют те методы физико-химического анализа, в основе которых лежит явление испускания или поглощения инфракрасных, видимых, ультрафиолетовых, рентгеновских лучей анализируемыми веществами или продуктами их реакций. Сюда относятся колориметрия, нефелометрия, флуорометрия, спектрофотометрия, по-ляриметрия, рефрактометрия и др. [c.6]

    Следовательно, в теории Свободных электронов плотность электронных состояний описывается параболической кривой (см. рис. 50, а), что обусловлено сферической симметрией поверхности Фермит- В действительности (см. п. 5) форма поверхности Ферми даже в случ 1е самых простых металлов отличается от сферической и потому g (е) отклоняется от параболической зависимости. Схематический вид кривой g (е), которая была получена для твердого натрия при изучении спектра испускания мягких рентгеновских лучей [18], приведена на рис. 50, б. Отметим прежде всего, что энергия Ферми натрия почти та же, что предсказана теорией ( 2,5 эВ, см. выше), и что форма кривой g (г) приблизительно параболическая, исключение составляет область А. [c.118]

    Эффект Оже — это явление автоионизации атома, находящегося в возбужденном состоянии, связанном с внутренним перераспределением энергии возбуждения. В отличие от обычной фотоионизации (см. гл. VIII), когда поглощение фотона приводит непосредственно к вылету электрона из атома, эффект Оже происходит в две стадии. На первой стадии поглощение рентгеновского кванта приводит к возбуждению атома, причем освобождается электрон из К-оболочки. На второй стадии электрон перескакивает в К-вакансию из менее связанной оболочки (например, -оболочки) при этом избыток энергии (е — е ) либо приводит к испусканию рентгеновского кванта, либо обусловливает вылет из атома одного из электронов верхних оболочек. Второй вариант и соответствует эффекту Оже. Отметим, что возбуждать атом можно не только рентгеновскими квантами, но и быстрыми электронами, а также другими частицами. [c.447]

    Почему при возбуждении металла посредстном электронной бомбардировки, как это показано на рис. 6.2, происходит испускание рентгеновских лучей с несколькими определенными частотами Фильтр (рис. 6.2 изготовлен из металла с атомным номером, на единицу меньшим, чем у атома мишени. Почему этот фильтр поглош,ает рентгеновские лучи всех частот, кроме одной (В случае затруднений см. разд. 1.5). [c.133]

    РАДИОАКТИВНОСТЬ, самопроизвольный распад неустойчивых атомных ядер, сопровождающийся испусканием корпускулярного или жесткого рентгеновского (-у-кванты) электромагн. излучения. Обычно в результате радиоакт. распада из ядер атомов одного хим. элемента обра- [c.490]

    Фотоионизация происходит с определенной вероятностью, когда фотон взаимод. с молекулой или атомом н энергия фотона равна или превышает потенциал ионизации молекулы или атома А + ку А +е. Зависимость сечения процесса от энергии , , в отличие от ионизации электронным ударом, имеет резкие максимумы при , = /,, где /, (г= 1, 2,. ..)-первый, второй и т.д. потенциалы ионизации атома или молекулы. При >/, возможны также диссоциативная фотоионизация с образованием двухзарядных ионов А -ь / у -> -1- 2е. Образование двухзарядных ионов обычно имеет место при выбивании первичного электрона из внутренней, напр., ЛГ-оболочки атома и переходе электрона из расположенной выше по энергии .-оболочки, что сопровождается испусканием рентгеновского кванта или вторичного электрона (Оже-электрона см. Рентгеновская спектроскопия). Фотоионизация возможна и при Е I, в зтом случае она носнт многоступенчатый (многофотонный) характер (см. Многофотонные процессы). [c.269]

    МОЛЕКУЛЯРНЫЕ СПЕКТРЫ, спектры испускания и поглрщеиия электромагн. излучения и комбинац. рассеяния света, принадлежащие свободным шш слабо связанным молекулам. Имеют вид совокупности полос (линий) в рентгеновской, УФ, видимой, ИК и радиоволновой (в т.ч. микроволновой) областях спектра. Положение полос (линий) в спектрах испускания (эмиссионных М. с.) и поглощения (абсорбционных М. с.) хараггеризуется частотами v (длинами волн X, = /v, где с-скорость света) и волновыми числами V = 1Д оно определяется разностью энергий и Е" тех состояний молекулы, между к-рыми происходит квантовый переход  [c.119]

    Оже-эффект заключается в следующем. Под действием ионизирующего излучения на одном из внутр. электронных уровней (напр., К-уровне) атома образуется вакансия, на к-рую переходит электрон с более высокого уровня (напр., з-подуровня). Возникший при переходе электрона избыток энергии может привести к испусканию рентгеновского фотона (излучат, переход) или к выбрасыванию еще одного электрона, напр, с подуровня (безызлучат. переход). Этот электрон называют оже-электроном, а его кинетич. энергия Е определяется ур-нием Е = Eg — Е — Е[ , где  [c.331]

    РАДИОАКТИВНОСТЬ (от лат. radio - излучаю и a tivus-действенный), самопроизвольное превращение нестабильных атомных ядер в др. ядра, сопровождающееся испусканием частиц, а также жесткого электромагн. излучения (рентгеновского или у-излучения). Ядра нового нуклида, к-рые образуются в результате радиоактивного распада исходного нуклида (радионуклида), м.б. стабильными или радиоактивными. [c.162]

    РЕНТГЁНОВСКАЯ СПЕКТРОСКОПЙЯ, раздел спектроскопии, изучающий спектры испускания (эмиссионные) и поглощения (абсорбционные) рентгеновского изучения, т.е. электромагн. излучения в области длин волн 10 -10 нм. Р. с. используют для изучения природы хим. связей и количеств. анализа в-в (рентгеновский спектральный анализ). С помощью Р. с. можно исследовать все элементы (начиная с Li) в соед., находящихся в любом агрегатном состоянии. [c.239]


Смотреть страницы где упоминается термин Рентгеновское испускание: [c.332]    [c.451]    [c.149]    [c.170]    [c.22]    [c.319]    [c.174]    [c.18]    [c.621]    [c.81]    [c.614]    [c.119]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.64 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние химической связи на поглощение и испускание рентгеновских лучей

Вычисление вероятности радиационного перехода р(Е) Форма и интенсивность рентгеновских полос испускания

Испускание рентгеновских лучей

Испускание рентгеновской флуоресценции

Основные сведения по физике рентгеновских лучей Спектры испускания лучей

Рентгеновские спектры испускания и структура твердых тел

Таблицы для рентгено-химического анализа Важнейшие рентгеновские линии испускания элементов, расположенные в порядке возрастания длин волн

Форма и ширина рентгеновских полос испускания К- и L-серий элементов первых периодов таблицы Менделеева



© 2025 chem21.info Реклама на сайте