Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

оксид, хлорирование селективное хлорирование

    Установлено, что степень хлорирования диоксида кремния в процессе восстановительного хлорирования значительно уменьшается при использовании в качестве восстановителя одного оксида углерода вместо смеси углеродсодержащих материалов. Оксид углерода значительно повышает селективность хлорирования алюминия по сравнению с кремнием. Введение хлорида кремния в реакционную газовую смесь оксида углерода и хлора приводит к практически полному подавлению процесса хлорирования кремния (например, при 950 °С). [c.24]


    В промыщленности нашел применение ряд процессов с использованием аппаратов кипящего слоя получение рутилового концентрата из ильменита селективным хлорированием окиси железа [49, 50], получение тетрахлорида титана хлорированием рутила или ильменита [51—53], получение хлорида алюминия хлорированием активной модификации оксида алюминия [54, 55]. [c.23]

    Различное сродство отдельных оксидов к хлору может быть использовано для обогащения хромитовой руды методом селективного хлорирования. [c.352]

    Химические реакции также можно использовать для контроля процесса испарения (разд. 4.4.6). Они уже упоминались в связи с добавками угольного порошка. Как отмечалось при обсуждении разрядов в специальных атмосферах (разд. 3.2.5), наиболее обшей методикой, примененной для металлов, руд и шлаков, является хлорирование, позволяющее использовать постоянные аналитические кривые. Обычно дистилляция с носителем оказывает общее селективное действие, а хлорирование или фторирование не подавляет матричного эффекта, а только изменяет его [32]. Летучесть группы следов элементов можно увеличить с помощью галогенирующих добавок. Так, предел обнаружения некоторых элементов в порошке белого чугуна можно значительно снизить использованием в качестве добавки фторида натрия, при этом висмут, бор и алюминий можно определять в количествах 1-10 , 5-10 и 5-10 % соответственно [33]. Фторид свинца особенно подходит для увеличения чувствительности определения менее летучих элементов в минералах и горных породах, а также для термического разложения соединений с высокой температурой кипения. Добавляя к пробе фторид свинца в соотношении 1 1, можно определять элементы, образующие летучие фториды (Ве, 2г, ЫЬ, Та, W, 5с, X, некоторые редкоземельные металлы), с пределом обнаружения порядка 10 % и воспроизводимостью около 10%. Тетрафторэтилен (тефлон) также пригоден для использования в качестве фторирующего агента [34]. При анализе главным образом металлов группы железа в качестве носителя часто используется хлорид серебра. При разбавлении пробы не менее чем в 400 раз матричный эффект можно снизить до такого уровня, что становится возможным определение основных компонентов и примесей в материалах различного состава [35]. В этом случае хлорид серебра действует и как носитель. Летучие сульфиды также подходят в качестве носителя, если соответствующие термохимические реакции вызываются добавкой серы [36] или одновременно сульфата бария, серы и оксида галлия [37]. Таким способом можно увеличить чувствительность определения германия и олова в геологических пробах. Принимая во внимание термохимические свойства проб и различных добавок и составляя соответствующие смеси, можно в желаемом направлении влиять на ход испарения й создавать условия, благоприятные для группового или индивидуального определения элементов [38, 39]. Селективное испарение можно использовать в специальных источниках излучения (разд. 3.3.4) или даже в качестве предварительного способа разделения (разд. 2.3.6). [c.122]


    Хлориды меди являются значительно менее активными хлорирующими агентами и при взаимодействии с алкилбензолами дают в основном продукты диспропорционирования и полимеризации. Если исходный алкила-роматический углеводород имеет сравнительно невысокую температуру кипения (например, толуол), его можно хлорировать в газовой фазе. При этом замещение в ядре происходит, как правило, уже без участия катализатора. При высокотемпературном (350-450 °С) газофазном хлорировании молекула толуола претерпевает расщепление, в результате которого образуется гексахлорбензол и четыреххлористый углерод. Этот процесс наиболее интенсивно протекает в присутствии активированного угля и при избытке хлора степень конверсии толуола при этом превышает 82% [50]. Газофазное хлорирование алкилбензолов в присутствии катализаторов (га-логенидов, оксидов титана и сурьмы) приводит к получению смеси хлорзамещенных, содержащих хлор в ароматическом ядре. Реакция хлорирования в ядро в этих условиях протекает с очень высокой скоростью и повышенной селективностью [51]. [c.25]

    Окислительное хлорирование с целью селективного выделения железа предпочтительно проводить в шахтных хлораторах при использовании в качестве сырья гранул со связующим компонентом. Попытки удалить железо из гранул путем перхлорирования в восстановительных или нейтральных условиях оказались неосуществимыми вследствие одновременного хлорирования избытка оксида алюминия. [c.24]

    Адсорбция кислот с длинной цепью на поверхности раздела тетрахлорид углерода — оксид алюминия приводит к плотной упаковке молекул кислоты перпендикулярно поверхности таким образом, что алкильные цепи закрыты, а снаружи находятся лишь терминальные метильные группы. Свободнорадикальное хлорирование в этих условиях резко повышает выход продуктов хлорирования концевой метильнбй группы [265]. Результат, сходный с хлорированием аминов по Гофману-Лефлеру, наблюдался при свободнорадикальном хлорировании кислот с длинной цепью в сильнокислой среде. Этот процесс, являющийся результатом перегруппировки МакЛафферти в растворе схема (137) объясняют [266] образованием кислородных катион-радикалов. В случае гексановои и октановой кислот помимо избирательного хлорирования по С-4, получаются сравнимые количества продуктов терминального хлорирования. Радикальное хлорирование высших кислот и их сложных эфиров, инициируемое катион-радикалом азота [267, 268], проходит с высокой селективностью по и — 1-положению, причем почти исключительно получается продукт монохлорирования.  [c.57]

    Предложен имеющий промышленное значение процесс монохлорирования в кольцо соединений, содержащих электронодонорную группу, например фенолов и ароматических аминов, взаимодействием их с СиСЬ в водном солянокислом растворе, с введением газообразного хлора для окисления образующегося u l в СиСЬ достигаются хороший выход и высокая селективность [20]. Можно / также хлорировать фенолы и ароматические амины в кольцо с получением преимущественно л-производных, используя хлориды не только меди, но и других элементов I, II и III групп [20]. Взаимодействием ароматических соединений с солями меди и донором иода (I2 или любые иодиды металлов и неметаллов I—VIII групп) получают арилиодиды [21]. Описан простой метод направленного галогенирования алкилароматических соединений в кольцо в присутствии оксида кремния [22]. Хлорирование с помощью хлоридов Иалладия, железа, титана и других металлов см. [23]. [c.173]

    Область научных интересов разработка и исследование катгшизаторов для процессов дегидрирования и изомеризации низших парафинов, катализ нанесенными сплавами, проблемы №я1Н селективного хлорирования углеводородов и дегидрохлорирования на нанокристаллических оксидах. [c.99]

    Роль водорода. Пропускание углеводородов над хлорированным и фторированным оксидом алюминия при температурах риформинга приводит к быстрому их закоксовыванию [Ш, 112]. Однако катализаторы риформинга на этих носителях работают длительное время, не изменяя существенно своей активности и селективности. Следовательно, в условиях риформинга, гидрирование ненасыщенных соединений, ответственных за образование кокса, происходит не только на платине, но и на носителе. Гидрирование же на носителе может осуществляться только за счет водорода спилловера. [c.56]

    Хорошо известно, что гомолитическое хлорирование высших жирных кислот протекает почти не дискриминационно и дает сложную смесь хлорированных продуктов. В то же время если субстрат нанесен на поверхность оксида алюминия, то при подобном хлорировании резко доминирует атака по его концевым положениям [37а] было найдено, что в продуктах такого хлорирования содержится свыше 90% смеси 17-хлор- (239а) и 18-хлорстеа-риновых (239Ь) кислот в соотношении 0,8 1,0 (схема 4.75) [37Ь]. Наблюдаемый эффект был объяснен образованием плотно упакованного мономолеку-лярного слоя стеариновой кислоты, адсорбированной на поверхности своими полярными карбоксильными группами, тогда как концы гидрофобных цепей ориентированы наружу и потому более доступны для атаки реагентов, чем их внутренние участки. Приведенный пример иллюстрирует чисто механистический подход к решению проблемы селективности. Очевидно, что он имеет достаточно ограниченную область применения. [c.489]


    Галогенированный оксид алюминия, однако, быстро дезактивируется, поэтому его используют для промышленных нужд только в качестве носителя. Выще приведены данные об использовании фторированного и хлорированного оксида алюминия для осаждения на нем сверхкислот и хлорида алюминия. Наибольшее промышленное значение приобрели катализаторы на основе галогенированного оксида алюминия с осажденным на нем металлом VIII группы, Та ие катализаторы при большой активности и селективности являются и высокостабильными (см. ниже). [c.95]

    В то же время селективность реакции недостаточна для получения чистых цродуктов монохлорщ>ования при достаточно больших конверсиях по исходному углеводороду. Использованием реагентов, чувствительность которых к полщ)Ному эффекту максимальна, можно увеличить селективность по монохлориду. Так, например, при хлорировании н-хлораминами в кислой среде удается получать продукты монохлорирования, не загрязненные полихлоридами при практически количественной конверсии исходного субстрата. С другой стороны, при использовании реагентов, для которых оцреде-лявдей является селективность по отношению к энергетическому фактору, удается ползгчать полихлориды в мягких условиях. Так, например, оксид хлора (I) является одним из лучших реагентов для получения бензотрихлоридов с электроноакцепторными заместителями в ароматическом кольце [22]. [c.39]

    Методы разложения с применением иода как окислителя имеют менее важное значение, чем методы, основанные на хлорировании или бромировании. Водные растворы смеси иода и иодида калия, содержащие трииодид-ион 1з, применяют для растворения свинца, олова и сурьмы. Для разложения берут избыток иода и содержание металла определяют титриметрически по количеству иода, не вступившего в реакцию [5.1889]. При определении примесей в олове пробу обрабатывают раствором иод-иодида и затем из раствора отгоняют олово в виде 5п14. Иод-иодидный раствор можно использовать для определения пирофорного железа [5.1890]. Оксиды выделяют из стали растворением металлической матрицы в растворе иода в абсолютированном этаноле [5.1891] водные растворы иода для этой цели не применяют. В модифицированном методе в качестве растворителя применяют метанол (70 г 2 в 600 мл СНзОН) и разложение проводят в специальном приборе, исключающем доступ воздуха и влаги [5.1892]. Аналогичные растворы, например 120 г 1а в 1 л, рекомендованы для селективного окисления сульфидов в стали [5.1893]. [c.266]


Смотреть страницы где упоминается термин оксид, хлорирование селективное хлорирование: [c.189]    [c.67]    [c.489]    [c.39]    [c.66]    [c.99]    [c.43]   
Неорганические хлориды (1980) -- [ c.10 ]




ПОИСК





Смотрите так же термины и статьи:

оксид, хлорирование

оксид, хлорирование хлорирование



© 2025 chem21.info Реклама на сайте