Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорирование радикальное

    При хлорировании непредельных соединений, как правило, хлор барботируют через раствор непредельного соединения в соответствующем растворителе, при бромировании и иодировании к раствору непредельного соединения по каплям прибавляют раствор галогена в том же растворителе. В качестве растворителя при галогенировании используют галогеналканы, уксусную кислоту, простые и сложные эфиры и другие органические жидкости, не взаимодействующие с галогеном в условиях реакции присоединения, а также воду. Полярные растворители способствуют гетеролитиче-скому протеканию реакции. Чтобы избежать свободнорадикального течения, реакции проводят в темноте и в присутствии ингибиторов радикальных реакций. [c.121]


    Хлорирование и бромирование гомологов бензола в боковую цепь описаны в разделе 2.3. Радикальное замещение и присоединение . [c.174]

    РАДИКАЛЬНО-ЦЕПНОЕ ХЛОРИРОВАНИЕ [c.101]

    Влияние инициаторов. Имеется большая группа химических реакций —окисление молекулярным кислородом, хлорирование и бромирование органических соединений, реакции полимеризации и др., которые начинаются при наличии инициаторов реакции и протекают по цепному радикальному механизму. Такие реакции называют цепными реакциями. Инициатором реакции обычно являются радикальные частицы. В качестве примера может быть приведена реакция взаимодействия газообразного хлора с водородом. В темноте эта реакция идет с малыми скоростями. При освещении или введении инициатора, например паров натрия, реакция идет со взрывом. Некоторые перекисные и азосоединения легко распадаются на радикалы и инициируют реакции полимеризации. [c.530]

    Атом хлора, образующийся в реакции (24.20), вступает в реакцию со следующей молекулой этана, и таким образом происходит цепная реакция. Следовательно, каждый квант света, поглощенный молекулой хлора, приводит к образованию множества молекул этилхлорида. Описанная реакция служит примером радикального цепного процесса. Одним из неудобств подобных радикальных цепных реакций является их не слишком высокая селективность (избирательность). По мере возрастания концентрации этилхлорида в такой реакции атомы хлора могут замещать следующие атомы В(з дорода, В результате чего образуются дихлорэтан и даже более хлорированные молекулы. Таким образом, в реакции образуется несколько продуктов, которые приходится отделять друг от друга перегонкой или другими методами разделения. [c.425]

    Наибольшей реакционной способностью среди галогенов обладает фтор, который не исполь-зуется для определения непредельности вследствие его чрезвычайно высокой активности. Хлор, несмотря на высокую кислотность, также ие используют, так как ири хлорировании наряду с реакцией ирисоединения всегда глубоко протекают побочные реакции замещения, внутримолекулярной циклизации, деструкции, сшивания макромолекул. Бром легко присоединяется к непредельным соединениям, причем реакция может протекать и по радикальному механизму. В растворе эти процессы могут осуществляться одновременно, и в обоих случаях образуется один и тот же дибромид. При действии брома, как и в случае хлора, наблюдается интенсивный процесс замещения. Иод, как правило, применяют 13 присутствии катализаторов, которыми служат соединения двухвалентной ртути. Действие катализатора заключается в иоляризацни молекулы ио.та и брома и увеличении, таким образом, скорости ирисоедниепия галогена. [c.69]


    Каталитическое хлорирование. Галоидирование парафинов катализируется углеродом, металлами, солями металлов и соединениями, разлагающимися с образованием свободных радикалов. К последним относятся тетраэтилсвинец, гексафенилэтан и азометан, действие которых заключается в инициировании свободно-радикальной цепи. Такие металлы, как медь, по-видимому, частично превращаются в хлориды, являющиеся эффективными катализаторами. Для различных реакций хлорирования применялись хлориды меди, церия, железа, сурьмы, алюминия и в меньшей степени титана и олова. Каталитическое действие их усиливается при нанесении соли металла на сильно развитую поверхность, например на. стекло, пемзу, окись алюминия или силикагель. [c.62]

    Углеводород имеет элементный состав 82,76% углерода и 17,24% водорода (по массе). При хлорировании (радикальном) углеводород образует два изомерных монохлорида — первичный и третичный. Определите строение исходного углеводорода. [c.289]

    Хлорирование элементарным хлором — наиболее широко применяемая реакция прямого галогенирования. Хлорирование метана протекает бурно и обычно ведет к образованию смеси моно- и поли-галогенидов. Реакция ускоряется действием света, нагреванием, введением веществ, способных давать свободные радикалы. По своему механизму она является радикально-цепным процессом  [c.65]

    В условиях, способствующих протеканию реакции по радикальному механизму, — в газовой фазе, при высоких температурах, в присутствии промоторов и т. д. — скорость хлорирования замещением в боковой цепи больше, чем в ядре. [c.285]

    Введение атомов хлора ведет к дезактивированию молекулы, поэтому отношение констант скорости последовательных стадий прп радикально-цепном хлорировании меньше единицы и обычно изменяется в пределах 0,2—0,8. Значит, последовательное введение атомов хлора в молекулу все более затрудняется, Исклкчением является метан, особая структура которого (с четырьмя атомами водорода) приводит к тому, что первая стадия его хлорирования протекает медленнее остальных. [c.109]

    Гомолитические (радикальные) реакции. Например, хлорирование метана  [c.39]

    Хлористый бензоил получают также хлорированием бензойного альдегида, протекающим по радикальному механизму  [c.305]

    Хлорирование молекулярным хлором в растворе протекает по свободно-радикальному механизму [1] и в самом общем виде мол<ет быть представлено схемой [c.47]

    Хлорирование при действии молекулярного хлора рассматривается обычно как цепной радикальный процесс [15]  [c.278]

    Хлорирование проводят при высоких температурах, и вместо присоединения преимущественно протекает радикальное замещение по соседству с двойной связью. [c.257]

    В химии лигнина важно электрофильное ароматическое хлорирование Радикальное хлорирование, используемое для введения хлора в углеводороды алифатического ряда, в химии лигнина значения не имеет Имеет лишь второстепенное значение электрофильное присоединение хлора по кратным связям Это объясняется особенностями строения лигнина, его жирноароматической структурой, наличием функциональных групп, особенно фенольных гидроксилов, и тем обстоятельством, что хлорирование, по крайней мере до настоящего времени, имеет целью деградацию лигнина, а не использование хлорированных дигнинов для синтетических целей Электрофильное хлорирование, сопровождаемое побочными реакциями и в первую очередь реакциями окисления, приводит к глубокому преобразованию лигнина, его деградации Эти реакции применительно к лигнину имеют много общего с электрофильным нитрованием [c.79]

    Адсорбция кислот с длинной цепью на поверхности раздела тетрахлорид углерода — оксид алюминия приводит к плотной упаковке молекул кислоты перпендикулярно поверхности таким образом, что алкильные цепи закрыты, а снаружи находятся лишь терминальные метильные группы. Свободнорадикальное хлорирование в этих условиях резко повышает выход продуктов хлорирования концевой метильнбй группы [265]. Результат, сходный с хлорированием аминов по Гофману-Лефлеру, наблюдался при свободнорадикальном хлорировании кислот с длинной цепью в сильнокислой среде. Этот процесс, являющийся результатом перегруппировки МакЛафферти в растворе схема (137) объясняют [266] образованием кислородных катион-радикалов. В случае гексановои и октановой кислот помимо избирательного хлорирования по С-4, получаются сравнимые количества продуктов терминального хлорирования. Радикальное хлорирование высших кислот и их сложных эфиров, инициируемое катион-радикалом азота [267, 268], проходит с высокой селективностью по и — 1-положению, причем почти исключительно получается продукт монохлорирования.  [c.57]

    Фотохимическое хлорирование является типичным радикально-цепным процессом [1]. Подвод энергии в форме ультрафиолетового света вызывает расш епление молекулы хлора на атомы  [c.112]

    R--t-( eH6hN- - RN( eH6)j Большое число радикальных реакций проводится в газовой фазе. При проведении радикальных реакций в растворах природа растворителей сказывается иа кинетике этих процессов в значительно меньшей степени, чем на кинетике реакций, протекающих по ионному механизму. Олнако в ряде случаев растворитель оказывает заметное влияние на селективность процесса. Так, например, при свободнорадикальном хлорировании 2,3-диметилбутана замена [c.148]


    Катализируемое перекисями разложение хлористого сульфурила как источник хлора исследовалось Карашем и Брауном [16]. Метод моя ет применяться для хлорирования парафинов и галоидалкилов, он дает выход 85% продуктов мопохлорирования. Вторичные углеродные атомы замещаются лучше первичных, присутствие хлора у атома углерода затрудняет дальнейшее хлорирование. Реакция ингибитируется кислородом, иодом или серой н определяется как свободно-радикальная реакция со следующим механизмом. [c.63]

    Дальнейшее разъяснепнс механизма высокотемпературного хлорирования дает исследование результата хлорирования аллилхлорида и 1-хлорнропена-1. Каждый из них дает смесь, состоящую из 90% 1,3-ди-хлорпропена и 10% 3,3-дихлорпронена-1. Для объяснения результатов был предложен следующий свободно-радикальный механизм [34а]  [c.365]

    Основное направление исследований процессов химической модификации эластомеров и их промышленной реализации состояло в создании новых материалов (смол, клеев, пленок и т. д.) [5] с помощью реакций гидрохлорирования (пленки типа плиофильм, эскаплен [6]), хлорирования (покрытия, клеи), циклизации и изомеризации (полимеры плиоформ, термопрен, эскапон [7, с. 939—990 8]), окисления (раббон), радикальной прививки (гевеяплас). [c.225]

    Параллельные реакции при хлорировании и селективность процесса. Выше уже говорилось, что при радикально-ценном хлорировании олефинов и ароматических углеводородов протекают параллельные реакции присоедниепия и замещения. Доля каждой из них зависит от относительной скорости элементарной стадии взаимодействия свободного атома хлора по соответствующему положению молекулы органического вещества  [c.106]

    Кроме температуры и способа проведения реакций (в жидкой иаи газовой фазе) на селективность радикально-цепного хлорирования влияет состояние атома хлора в растворе. Некоторые рас-тгорители (о-дихлорбензол, гексахлорбутадиен) образуют с ним комплексы, снижают его активность и соответственно увеличивают селективность в отношении атаки в разные положения молекулы. Это также позволяет регулировать состав продуктов -параллель-Нэ1х реакций хлорирования. [c.108]

    Следует отметить, что радикально-цепное хлорирование все е мало селективно. Поэтому органический реагент должен быть дэстаточно чистым (98% и выше), чтобы избежать излишнего расхода хлора и загрязнения продуктов. [c.108]

    Последовательные реакции хлорирования и селективность про-цгсса. Кроме параллельных реакций, при радикально-цепном хлорировании почти всегда протекают последовательно-параллельные превращения, в результате которых в иг.ходную молекулу вводит-ст все большее число атомов хлора. В дополнение к ранее данным примерам можно привести случай хлорирования 1,2-днхлор-эгана  [c.108]

    При жидкофазиом радикально-цепном хлорировании, проводимом при относительно низких температурах (от 40 до 100— 150°С), почти всегда требуются инициаторы илн облучение смеси, что ведет к допол1Штельи.ым экономическим затратам по сравнению с термическим хлорированием. Поэтому выбор жидкофаз-кого хлорирования оправдан при получении термически нестабильных веществ, легко отщепляющих H l [монохлорпарафины с длинной углеродной цепью, полихлориды Са и выше], а также соеди- [c.110]

    Реакционный узел (как и весь процесс жидкофазного хлориро-Bi ния) можно выполнить и периодическим, и непрерывно действующим. Независимо от этого основной аппарат (хлоратор) должен быть снабжен барботером для хлора, холодильниками для отвода выделяющегося тепла, обратным холодильником илн газо-отделптелем па линии отходящего газа (НС1), необходимыми коммуникациями и контрольно-измерительными приборами. В реакторе для фотохимического хлорирования имеются также приспособления для облучения реакционной массы (внутренние ртутно-кварцевые лампы, защищенные плафонами, илн наружные лампы, освещающие реактор через застекленные окна в корпусе). Схемы типичных реакторов для жидкофазного радикально-цепного хлорирования изображены на рис. 37. [c.114]

    Технология жидкофазного радикально-цепного хлорирования складывается из нескольких стадий подготовки исходных реагентов, собствепио хлорирования, переработки отходящего газа и ути-лнзагии НС1, переработки жидкой реакционной массы и выделения продуктов реакции. [c.115]

    Ранее были рассмотрены реакции радикально-цепного хлорирования ароматических соединений (замещение в боковую цепь н присоединение по С—С-связям ядра). Замещение в ядро происходит в присутствии катализаторов ионных реакций, когда оно ста-новися практически единственным направлением хлорирования ароматических соединений. [c.135]

    Гексахлорбутадиен ССЬ=СС1— l = l2 применяется в качестве инсектицида. Его получают двухступенчатым процессом из к-бутаиа, н-бутиленов или их смесей. Вначале их хлорируют в жидкой фазе радикально-цепным путем, получая продукт с брутто-фор-муло 4H4 I6. Затем в реакторе с псевдоожиженным слоем гетерогенного контакта осуществляют совмещенное хлорирование и дегидрохлорирование этого продукта  [c.149]

    Технология получения алкилсульфонатов. По технологии у реакции су льфохлорирования имеется много сходства с жидкофазным радикально-цепным хлорированием парафинов (стр. 112). Процесс осуществляют главным образом фотохимическим способом в кэлонных аппаратах, снабженных по всей высоте устройствами для облучения смеси ртутно-кварцевыми лампами. Проверен и радиационнохимический метод с у-облучением источником °Со. При непрерывном производстве часто применяют единичную барботажную колонну, хотя из-за развития обратного перемешивания при барботированни газа в таком аппарате несколько ухудшается состав реакционной смеси. Предложено проводить процесс и в каскаде барботажных аппаратов или в секционированной колонне с тарелками. [c.339]

    Хлорирование и бромирование являются примером неразветв-ленных цепных радикальных реакций. Они инциируются светом, нагревание.м, химическими инициаторами радикальных реакций. Например, механизм хлорирования этана может быть представлен схемой  [c.150]

    При наличии В ядре боковой цепи радикальное хлорирование напран-ляется прежде всего на атомы водорода, связанные с атомом углерода, соседним с ароматическим кольцом, поскольку в этом случае образуются очень стабильные бензпльные радикалы. Их стабилизация является следствием сопряжения несиареиного электрона с я-электрон-ным облаком  [c.255]


Смотреть страницы где упоминается термин Хлорирование радикальное: [c.60]    [c.107]    [c.109]    [c.119]    [c.135]    [c.188]    [c.47]    [c.65]    [c.764]    [c.57]    [c.482]    [c.14]    [c.138]   
Органикум. Практикум по органической химии. Т.2 (1979) -- [ c.224 ]

Введение в электронную теорию органических реакций (1965) -- [ c.532 ]

Общий практикум по органической химии (1965) -- [ c.142 ]

Курс теоретических основ органической химии издание 2 (1962) -- [ c.870 ]

Технология органического синтеза (1987) -- [ c.242 , c.243 ]




ПОИСК







© 2024 chem21.info Реклама на сайте