Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серная кислота теплота испарения

    Для термохимических расчетов в производстве серной кислоты необходимо иметь данные о теплоте образования серной кислоты, теплоте разбавления и смешивания кислот, теплоемкости, теплоте испарения воды, теплопроводности, вязкости и др. Объем учебника не позволяет подробно остановиться на этих свойствах серной кислоты, поэтому ниже приводятся только самые общие сведения. [c.17]


    Теплота испарения 100%-й серной кислоты составляет 510,9 кДж/моль, теплота плавления — 110,08 кДж/моль. [c.22]

    Пример 21. В сатуратор, содержащий 130 кг 76% раствора серной кислоты, подается 34 кг газообразного аммиака, барбо-тирующего через раствор. Определить, какое количество теплоты может быть использовано для испарения реакционной воды, если первоначальная температура кислогы и аммиака 25°С, а потери теплоты сатуратором в окружающую среду равны 9% от общего прихода теплоты. [c.57]

    Особенности эксплуатации сатураторных схем. Основные технические решения в сульфатных отделениях сложились в 30-40-х годах. Так, для поддержания теплового баланса сатуратора предполагается установка газового подогревателя на случай, если из-за использования серной кислоты пониженной концентрации или при подаче избыточных количеств воды в систему теплоты образования сульфата аммония (1,173 МДж/кг) окажется недостаточно для испарения всей избыточной воды. [c.204]

    Вследствие большой скрытой теплоты испарения диоксида серы он употребляется в холодильных установках ЗОд также используется для получения целлюлозы сульфитным способом, для дезинфекции помещений. Дезинфицирующие свойства ЗОа основаны на способности его убивать растительные и животные микроорганизмы. В связи с этим ЗОз применяется для окуривания пивных и винных бочек, для дезинфекции белья, одежды, погребов, подвалов и других помещений. Однако в основном ЗОа используется для получения серной кислоты (см. Серная кислота ). [c.572]

    Ванна электроэкстракции цинка работает с токовой нагрузкой 20 кА при напряжении на участке катод — анод 3,30 В и катодном выходе по току цинка 91 %. На электролиз воды затрачивается 8 % пропущенного электричества снижение выхода по току за счет межэлектродных шунтирующих замыканий и утечек тока 1,0 %. Рабочий электролит содержит растворенного цинка 44 г/л и серной кислоты 152 г/л, температура электролиза Зв" С. Компенсация выделяемой джоулевой теплоты осуществляется подачей охлажденного кислого электролита, содержащего 57 г/л цинка. Для простоты расчета принять неизменность объема раствора и равными теплоемкости выходящего и поступаемого растворов [3,75 кДж/(л-град)]. В общем расходе теплоты потери от конвекции, излучения и испарения воды составляют 5 %. [c.274]

    В холодильнике за счет испарения некоторого количества воды отводится теплота разбавления серной кислоты, поступающей на гидратацию, а также тепло, выделяющееся при перекристаллизации полугидрата сульфата кальция в гипс. Фильтрование ди-гидратной пульпы производят на ленточном (или карусельном) фильтре при 65—68°. Вследствие выделения при гидратации полугидрата крупных хорошо фильтрующих кристаллов гипса фильтрование пульпы происходит с большой скоростью. Длительность всего цикла—основной фильтрации с одной или двумя противо-точными промывками — составляет 1 мин. При этом образуется лепешка толщиной 45—50 мм. [c.137]


    Процесс выделения изобутилена 45%-ной серной кислотой осуществляется в газовой фазе. Изобутилен получают через стадию образования триметилкарбинола, выделяемого из экстракта под вакуумом с последующей дегидратацией триметилкарбинола на оксиде алюминия. Достоинствами процесса являются высокая избирательность и использование теплоты испарения углеводородов для отвода теплоты реакции. [c.132]

    В экстракционной установке экстракция серы достигается обработкой гранул горячим растворителем. В Великобритании для целей экстракции обычно используют перхлорэтилен (СаС] ), так как этот растворитель легко доступен, имеет высокую растворяющую способность в отношении серы в горячем состоянии (около 80°) (обычно работают при температуре несколько ниже точки кипения, равной 120,7°), не воспламеняется и имеет низкие удельную теплоемкость и скрытую теплоту испарения. Извлечение серы из насыщенного раствора осуществляют прямой дистилляцией или кристаллизацией. Сера, получаемая кристаллизацией, представляет собой практически чистый продукт, который в производстве серной кислоты контактным методом может конкурировать с природной серой. Однако при существующих рыночных ценах производство такой серы неэкономично ввиду высоких капитальных и эксплуатационных затрат на ее производство, и в обычной практике применяется простая дистилляция с получением продукта, содержащего 98— 99% серы с примесями смолы и окислов железа. Можно использовать и другие растворители, в том числе и сероуглерод. Процесс экстракции заключается в последовательной обработке гранул, содержащих 30% серы, порциями растворителя при температуре его [c.443]

    Мольная теплота испарения X серной кислоты составляет 46054 кДж/моль, что представляет несколько большую величину, чем X воды (41868 кДж/моль). Поэтому при перегонке в вакууме, согласно правилам Вревского, азеотропная смесь будет изменять свой состав в направлении еще большего обогащения кислотой. Таким образом, все приведенные данные свидетельствуют о принципиальной возможности полного концентрирования кислоты в отгонной вакуумной колонне при умеренных температурах, исключающих разложение кислоты. Кипятильник в такой колонне может быть выполнен из обычной углеродистой стали, так как находящаяся в кубе и кипятильнике высококонцентрированная кислота не будет вызывать коррозии. Отгонная колонна и особенно ее верхняя часть должны быть надежно защищены от коррозии разбавленной кислотой. Можно рекомендовать примерно следующие параметры работы такой противоточной вакуумной колонны температура конденсации отгоняемых водяных паров 40—45 °С (чтобы обеспечить охлаждение конденсаторов дешевой производственной водой). Эта температура соответствует давлению 9,2-9,9 кПа при таком давлении температура кипения 98 %-ной серной кислоты будет равна 210—215 °С и обогрев кипятильников может быть осуществлен водяным паром (Р= 3,99-4,6 кПа, /= 235-240°С). [c.413]

    Накопление данных по изотермическим теплотам испарения и теплотам образования ряда двойных систем (этиловый спирт—вода метиловый спирт—вода пропиловый спирт—вода азотная кислота—вода серная кислота—вода) позволило Михаилу Степановичу дать общую теорию раз- [c.29]

    Концентрирование серной кислоты. При концентрировании серной кислоты расход тепла складывается из тенла, необходимого для подогрева кислоты от начальной температуры до температуры упаривания теплоты дегидратации кислоты (численно равна дифференциальной теплоте разбавления кислоты, но имеет обратный знак) п теплоты испарения удаляемой воды. [c.172]

    Теплота испарения воды из серной кислоты данной концентрации при определенной температуре вычисляется по уравнению  [c.17]

    Теплота испарения 100%-ной серной кислоты при 326 °С равна 122,12 ккал/кг. Теплота разбавления серной кислоты водой. д) определяется по формуле  [c.412]

    Теплота испарения безводной серной кислоты составляет 512,2 кДж/кг (122,2 ккал/кг). [c.14]

    Теплота испарения воды из раствора серной кислоты данной концентрации может быть вычислена как сумма дифференциальной теплоты разбавления и теплоты испарения воды при данной температуре. Так, например, если 70%-ная кислота упарена до ко -центрации 76%, то количество затраченного тепла можно вычислить по формуле [c.25]

    При сернокислотном разложении природного фосфатного сырья [основной компонент-апатит Са1оРа(Р04)в], сопровождающемся кристаллизацией дигидрата (гипса) или полугидрата сульфата кальция, в процесс вводят серную кислоту, фосфатное сырье и воду, а выводят продукционную экстракционную фосфорную кислоту ЭФК (30—48% РаОв), влажный фосфогипс и водяной пар с малым (при работе с ва-куум-испарительной установкой) или с большим (при воздушном охлаждении от реакционной суспензии в экстракторе) содержанием воздуха. Фосфогипс, состоящий из дигидрата или полугидрата сульфата кальция, содержит 18—40% воды, остальное — дигидрат или полугидрат сульфата кальция. В экстракторе выделяется значительное количество теплоты, которое отводится преимущественно путем испарения воды при воздушном охлаждении и в вакуум-испарителях экстракционных систем. Источники теплоты — экзотермические процессы разложения фосфата, смешения серной кислоты с жидкой фазой (фосфорной кислотой) фосфорнокислотной суспензии сульфата кальция, кристаллизации сульфата кальция [77, 109]. [c.71]


    Многообразие свойств SO2 позволяет использовать его в различных областях. На легкой сжижаемости SO2 (при —10 °С) и быстром испарении жидкого SO2, сопровождающемся значительным поглощением теплоты, основано применение его в холодильных установках. Ои также может быть использован как дезинфицирующее средство. Основная же масса получаемого в промышленности SO2 расходуется на производство серной кислоты. [c.289]

    Метьюз [1253] очищал продажный толуол с целью определения его теплоты испарения. Для этого он встряхивал толуол последовательно с серной кислотой, раствором едкого натра и ртУтью, после чего сущил над пятиокисью фосфора и подвергал фракционированной перегонке. Аналогичный метод очистки использовали Вильямс и Крчма [1274] при получении толУола для определения его диэлектрической постоянной. (См. также работу Ричардса и Уолласа [1548].) [c.288]

    Метьюз [1253] очищал м- и п-ксилолы для определения теплот испарения, встряхивая их последовательно с серной кислотой, раствором едкого натра и ртутью, высушивал затем над 19 — 12 [c.291]

    Теплота испарения безводной серной кислоты составляет 5.10,7 кдж1кг (122,12 ккал/ кг). [c.17]

    И кристаллизации сульфата кальция при обработке образовавшейся суспензии монокальцийфосфата серной кислотой. В первую секцию возвращают также значительную часть суспензии из предпоследней или последней секции — это позволяет снизить пересыщение и улучшить условия кристаллизации сульфата кальция. Выделяющиеся при разложении сырья фторидные газы из газового пространства экстракторов отсасываются в систему абсорбции, где улавливаются водными растворами Н251Рв. Теплота идущих в процессе экстракции реакций отводится путем отбора водяных паров в систему абсорбции (воздушное охлаждение) либо охлаждением циркулирующей суспензии за счет вакуум-испарения (вакуумное охлаждение). Возможно также предварительное разбавление серной кислоты и ее охлаждение в графитовых теплообменниках водой, но при этом должна быть уменьшена подача воды на отмывку осадка (см. разд. 4.6.8). [c.174]

    На рис. 5.25 изображена схема производства сульфата ам.мо-ния сатураторным способом. Так как теплоты нейтрализации серной кислоты аммиаком недостаточно для испарения всей воды, вводимой в систему, то очищенный от смолы коксовый газ подогревают до 50—60 ""С. Затем его подают в сатуратор 3, примешивая пароаммиачную смесь, получаемую при дистилляции надсмольной воды. Сатуратор — стальной цилиндрический аппарат с коническим днищем, футерован кислотоупорными плитками. Он заполнен суспензией, состоящей из раствора и кристаллов сульфата аммония, уровень которой поддерживается стоком через циркуляционный бак 5 с гидравлическим затвором, препятствующим прорыву газа. Температура суспензии 55—60 °С. Содержа- [c.250]

    Применение аммиака и солей аммония. Аммиак как таковой имеет сравнительно небольшое нрименение. Жидкий аммиак применяется в холодильном деле — для приготовления искусственного льда или для нонижения температуры помещения. Применение его в этих случаях основано на том, что жидкий аммиак при испарении поглощает большое количество теплоты из окружающей среды. Основное значение аммиака заключается в том, что он служит исходным продуктом для получения солей аммония, азотной кислоты, солей азотной кислоты, имеющих исключительно большое значение в промышленности, сельском хозяйстве и обороне страны. Об азотной кислоте и ее солях скажем дальше, здесь же остановимся на применении солей аммония. Ряд солей аммония применяется в качестве искусственных азотных удобрений для повышения урожайности сельскохозяйственных культур. Такие удобрения имеют громадное значение для развития нашего социалистического сельского хозяйства. К этим солям относятся сульфат аммония (МН4)2304, получаемый нейтрализацией серной кислоты аммиаком, и нитрат [c.142]

    Главная область применения ЗО2— произ-во серной кислоты. Благодаря большой теплоте испарения, а также легкой конденсируемости жидкий ЗО2 применяют в холодильной технике. Будучи сильным восстановителем в водных р-рах, ЗО2 обесцвечивает многие органич. красители, что используется при отбеливании соломы, шерсти, шелка, кукурузной муки и сахара. Жидкий ЗО2 применяют также в целлюлозной пром-сти, в нек-рых органпч. произ-вах как консервирующее вещество (напр., при хранении и перевозке фруктов и ягод). Перевозят 80 в стальных баллонах и цистернах. Сернистый газ является токсич. примесью в атмосферном воздухе промышленных городов при концентрации 0,03—0,05 мг л в воздухе вызывает раздражение глаз, горла, заболевание верхних дыхательных путей. Предельно допустимая концентрация 802 в воздухе производственных помещений 0,01 мг л. [c.415]

    Теплота испарения воды из раствора серной кислоты любой концентрации может быть вычислена как сумма дифференциальной теплоты разбавления и теплоты испарения воды при данной температуре. Например, если 70%-ная серная кислота упаривается до концентрации 76% Н2ЗО4, то количество тепла, затраченного на выпаривание воды, можно вычислить по следующей формуле  [c.27]

    Одновременно с испарением воды при упариваини сергюй кислоты происходит также испарение серной кислоты, приводящее к потерям ее. Количество испаряемой серной кислоты тем Польше, чем выше содержание H SOj в растворе. В современных концентрационных установках это количество невелико. Поэтому в общем тепловом балансе скрытая теплота испарения серной кислоты обычно ие учитывается. [c.287]


Смотреть страницы где упоминается термин Серная кислота теплота испарения: [c.300]    [c.311]    [c.118]    [c.109]    [c.44]    [c.230]    [c.198]    [c.391]    [c.208]    [c.14]    [c.242]    [c.28]   
Технология связанного азота Издание 2 (1974) -- [ c.412 ]

Технология минеральных удобрений и кислот Издание 2 (1979) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Определение скрытой теплоты испарения воды из растворов серной кислоты при 79.3 и сравнение теплового эффекта и работы разведения этих растворов водою

Серная кислота теплота испарения воды

Теплота испарения

Теплота испарения воды из раствора серной кислоты

Теплота кислот



© 2025 chem21.info Реклама на сайте