Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вынужденная эластическая деформация

    Большие деформации, развивающиеся в стеклообразных полимерах под влиянием больших напряжений, были названы вынужденно-эластическими, а само явление — вынужденной эластичностью. При вынужденно-эластической деформации не происходит смещения центров тяжести макромолекул друг относительно друга. Как и при высокоэластической деформации, изменение формы образца происходит за счет изменения конформаций макромолекул. Однако в отличие от высокоэластической деформации этот процесс при данной температуре практически необратим. [c.156]


    Уменьшение наклона кривой а = (г) по мере увеличения степени растяжения связано с началом развития в образце вынужденно-эластической деформации. С возрастанием напряжения скорость вынужденно-эластической деформации быстро увеличивается. В точке максимума на кривой а = / (е) скорость вынужденноэластической деформации становится равной скорости растяжения, задаваемой прибором. Напряжение, при котором это наблюдается, называют пределом вынужденной эластичности (ств). По достижении Ов происходит резкое сужение образца — образование так называемой шейки . При переходе в шейку полимер ориентируется и его свойства по сравнению со свойствами исходного материала существенно изменяются. Ориентированный материал обладает в стеклообразном состоянии более высокими значениями модуля упругости и предела вынужденной эластичности в направлении ориентации, чем изотропный материал. Когда при образовании шейки достигается степень вытяжки, обеспечивающая заметное возрастание 0в, развитие вынужденно-эластической деформации в шейке резко замедляется. Процесс деформации продолжается у границ шейки, где сечение образца уменьшено, т. е. там, где напряжение повышено, а упрочнение еще мало. На пологом участке кривой растяжения (участок II) напряжение при удлинении остается практически постоянным. Поперечное сечение шейки изменяется мало, и удлинение образца происходит, главным образом, за счет вынужденной эластической деформации материала у границ шейки. Длина шейки при этом увеличивается. Растяжение с образованием шейки и дальнейшим ее распространением является особенностью твердых полимеров. [c.157]

    Удлинения, возникающие на участке И кривой растяжения 2, после снятия нагрузки уменьшаются незначительно. Так как без приложения внешних напряжений тепловое движение в полимерном стекле не способно заметно изменять конформации макромолекул, фиксированные молекулярными взаимодействиями, то уже развившаяся вынужденно-эластическая деформация после снятия нагрузки оказывается фиксированной. Однако при нагревании полимера выше Тс, когда подвижность участков макромолекул возрастает, вынужденно-эластическая деформация полностью релак-сирует. [c.157]

    Твердые полимеры в отличие от обычных твердых тел обладают важной особенностью — способностью при больших напряжениях подвергаться так называемым вынужденно-эластическим деформациям, что приводит к возникновению ориентированного состояния полимеров. Все химические волокна и пленки находятся в этом состоянии и обладают ярко выраженной анизотропией структуры и физико-механических свойств. [c.104]


    Мы видели, что перемещение сегментов в процессе вынужденноэластической деформации происходит под действием напряжения, а не в процессе теплового перемещения, поскольку таковое в стеклообразном состоянии отсутствует. Однако определенный запас тепловой энергии в полимере имеется и при 7<Т(.. С ростом температуры в области ниже Тс запас тепловой энергии сегментов увеличивается и требуется все меньше внешней механической энергии для перемещения сегментов и развития вынужденно-эластической деформации. Поэтому предел вынужденной эластичности уменьшается с ростом Т. Формы кривой а—е при разных температурах приведены на рис. 10.5. При понижении температуры не только увеличивается предел вынужденной эластичности, но и сама кривая вырождается, становится неполной. Разрушение образца может произойти даже раньше, чем достигнут предел вынужденной эластичности От. При оСот разрушение, естественно, происходит при очень малых деформациях (доли процента), а это означает, что полимер при низких температурах ведет себя как хрупкий, не [c.149]

    Мы видим, что при разрушении даже хрупкого полимера, где перемещение сегментов под действием перенапряжений в вершине растущей трещины относительно невелико и внешне вынужденно-эластическая деформация не проявляется, наибольшие затраты энергии при разрушении идут на деформацию и связанное с этим рассеяние механической энергии в виде теплоты. Особенно сильно поглощается механическая энергия при образовании микротрещин. Чем больше образуется микротрещин (например, при ударе), тем труднее разрушить полимер, тем выше его стойкость к ударным нагрузкам. Образование микротрещин часто проявляется в виде побеления ( серебрения ) образца в месте удара. [c.198]

    Морозостойкость является условным показателем и в значительной степени зависит от метода определения (скорость нагружения, вид напряженного состояния и др.). Под морозостойкостью пластмасс понимают предельно низкую температуру, при которой еще не наступает хрупкое разрушение, т. е. возможна вынужденно-эластическая деформация. Морозостойкость обычно определяют по началу растрескивания ири условиях нагружения, близких к эксплуатационным, однако наиболее объективной оценкой является определение температуры хрупкости. [c.275]

    Явление вынужденно-эластической деформации полимеров было подробно изучено Лазуркиным С понижением температуры механическое напряжение, необходимое для перестройки молекул (предел вынужденной эластичности), повышается. Температура, при которой полимер начинает разрушаться при малых деформациях, а вынужденно-эластической деформации не наблюдается, представляет собой температуру хрупкости полимера. Таким образом, в стеклообразном состоянии для полимеров следует различать зону вынужденно-эластических деформаций и зону хрупкости. Температура хрупкости зависит от ме> молекулярного взаимодействия, плотности упаковки молекул, а также от молекулярного веса полимера Температуры стеклования и хрупкости высокомолекулярных стекол, определенные при одинаковых скоростях деформации, иногда образуют интервал в несколько десятков градусов. Так, если для полистирола интервал Тс—Гхр составляет около 10 °С, то для полиметилметакрилата он равен 100 °С, а для поливинилхлорида достигает даже 170 С Ч [c.124]

    Перенос низкомолекулярных веществ через полимерные стекла, характеризующиеся вынужденно-эластической деформацией [c.125]

    Ориентация полимерных молекул возможна как для аморфных, так и для кристаллических полимеров, у которых при растяжении наблюдается также и ориентация кристаллических областей. Для аморфных полимеров возможна ориентация всей цепной молекулы в целом (при необратимой пластической деформации) и ориентация участков молекул (при высокоэластических или вынужденно-эластических деформациях). Оба механизма ориентации имеют релаксационный характер, причем преобладание одного механизма ориентации над другим определяется температурой и скоростью вытяжки полимера. [c.146]

    Релаксационные явления и связанная с ними вынужденная эластическая деформация приводят к тому, что первичные трещины, образующиеся при растяжении органического стекла, раскрываются настолько широко (на 0,5 мкм и более), что удается наблюдать их возникновение и развитие непосредственно под микроскопом и даже невооруженным глазом. Эта особенность органических стекол и подобных им полимеров позволяет получить прямые доказательства неодновременности разрыва образца и подтверждение теории хрупкой прочности. В пользу этих представлений также говорят результаты исследования поверхности, образующейся при разрыве образца (поверхность разрыва), на которой хорошо видна линия встречи трещин. У полиметилметакрилата эта линия представляет собой гиперболу, возникшую вследствие пересечения двух растущих с одинаковой скоростью трещин, одна из которых начала развиваться раньше другой. У полистирола кривые менее правильны, что, по-видимому, связано с неодинаковой скоростью распространения различных трещин или с зависимостью ее от времени. Иногда линии встречи трещин [c.419]


    Данный расчет позволяет учесть нелинейные эффекты, связанные с неаддитивным сложением сил. Проведенный анализ соответствует малым напряжениям. При больших напряжениях, но при 8<1 (в области вынужденно-эластической деформации) необходимо учесть при преобразовании исходной системы уравнений (5.1), (5.2), (5.7) — (5.10) члены, пропорциональные е , что соответственно расширит спектр времен релаксации до 10 (времена релаксации будут зависеть от е) и в статических условиях даст f t- oo)=As.—Ве . Чтобы описать область ориентационного упрочнения полимеров (чему соответствуют еще большие деформации, но при этом остается е<1), необходимо учесть в исходных уравнениях члены, пропорциональные что приведет к соответствующему перегибу кривой ст=/(е) и дальнейшему росту напряжения а при увеличении е. Число времен релаксации соответственно возрастет до 14. [c.164]

    НЫХ условиях. Например, в твердых полимерах, по крайней мере при не очень низких температурах, в вершине треш,ины из-за больших перенапряжений может происходить вынужденно-эластическая деформация, изменяющая конфигурацию вершины трещины и, самое главное, препятствующая после разгрузки образца процессу смыкании трещины. Для таких полимеров скорость роста трещины в широкой области напряжений выражается, формулой (1. 18), которая с учетом поправки на изменение энергии активации с температурой примет следующий вид  [c.53]

Рис. 81. Схема перехода от хрупкого разрыва к вынужденно эластической деформации с увеличением степени вытяжки при испытании на разрыв вдоль оси вытяжки. Рис. 81. <a href="/info/50641">Схема перехода</a> от хрупкого разрыва к <a href="/info/747426">вынужденно эластической деформации</a> с <a href="/info/862047">увеличением степени</a> вытяжки при испытании на разрыв вдоль оси вытяжки.
    Это сходство подтверждается также образованием продольных треш,ин при экспозиции в озоне резин из НК и наирита, растянутых до 500—600% (рис. 156). Ориентация и кристаллизация при растяжении приводит, как известно, к упрочнению резин, прорастание трещин перпендикулярно направлению ориентации затрудняется, а образование трещин путем роста параллельных сколов облегчается. Аналогичное явление—образование продольных трещин серебра наблюдалось при вынужденно-эластической деформации ряда волокон и пластиков в условиях их кристаллизации и ориентации пачек- . [c.283]

    ЛВ — вынужденной эластической деформации, т. е. упругой, но не подчиняющейся закону пропорциональности. В точке В (предел эластичности) полимерный материал начинает необратимо удлиняться. До точки С он удлиняется почти при постоянном напряжении, после чего происходит резкое удлинение образца, при относительно небольшом увеличении напряжения, и в точке D образец разрущается. [c.36]

    Изучая дифракционные картины различных участков шейки разветвленного полиэтилена низкой плотности и сопоставляя их с результатами измерения показателей преломления и изменения размеров, пришли к выводу [495, с. 551, что холодная вытяжка (вынужденно-эластическая деформация) неориентированных пленок происходит в три стадии. Первая стадия — поворот оси а перпендикулярно направлению растяжения. Эта стадия сопровождается резким увеличением двойного лучепреломления. Вторая стадия — поворот оси с — сопровождается сравнительно небольшим увеличением двойного лучепреломления.На третьей стадии происходит скольжение кристаллитов, после того как они полностью ориентировались. При этом имеет место небольшое увеличение относительного удлинения и двойного лучепреломления. Одновременно наблюдается постепенное уменьшение поперечных размеров образца. [c.180]

    Термофлуктуационный механизм осложняется тем, что релаксационные процессы проявляются в полимерах тем отчетливее, чем выше температура. Так, по мере перехода к высоким температурам в микрообъемах перенапряжения проявляется вынужденная эластическая деформация. Вначале этот релаксационный процесс приводит к высокоэластическим деформациям в местах концентрации напряжений, главным образом у вершины микротрещин (термо-флуктуационно-релаксационный ме.ханизм), а затем при более высоких температурах — к образованию трещин серебра , стенки которых связаны между собой микротяжами (релаксационный локальный механизм разрушения). Выше температуры стеклования в высокоэластическом состоянии господствующими являются релаксационные процессы и механизмы разрушения приобретают резко отличительные черты (в табл. 11.2 — вязкоупругий механизм разрушения). Здесь в местах концентраций развивается локальное вязкое течение, которое приводит к образованию так называемых надрывов , являющихся аналогами трещин в хрупком состоянии. На схеме прочностных состояний (рис. 11.4) указаны области действия различных механизмов разрушения некристаллических полимеров, а также область пластического состояния между температурой пластичности и температурой текучести Т . Разрушение в [c.289]

    Для стеклообразных полимеров особенно важна способность выдерживать длительное действие внешней силы (нагрузки) при сохранении размеров в заданных пределах. Это определяется величиной и закономерностями ползучести. На рис. 10.6 показаны кривые ползучести полистирола при разных нагрузках. Видно, что при нагружении мгновенно увеличивается длина образца за счет развития упругой деформации (деформация пружины). Далее развивается замедленная упругость, качественно аналогичная развитию высокоэластической деформации (элемент Кельвина — Фойхта). Эта замедленная упругость характеризует развитие вынужденно-эластической деформации. Далее возможны два случая либо деформация перестает увеличиваться после достижения определенной величины, либо она развивается непрерывно. В первом случае мы говорим, что имеет место затухающая ползучесть, во втором случае — незатухающая ползучесть. Последняя развивается как за счет истинно необратимой, так и за счет замедленной вынужденноэластической деформации без образования шейки. Полимер может применяться как конструкционный материал только в том случае, если под действием заданной нагрузки в нем развивается затуха- [c.151]

    Высокоэластическая деформация, вынужденно-эластическая деформация стеклообразных полимеров, пластическая деформация кристаллических полимеров приводят к развертыванию молекулярных клубков и ориентации макромолекул в нанравлении действия силы. Ориентированные эластомеры можно охладить до Т<Тс и таким образом зафиксировать состояние ориентации макромолекул. Все ориентированные полимеры имеют одно общее свойство их прочность и модуль упругости при растяжении в направлении ориентации много больше, чем у неориентированного полимера, а гфочность и модуль при деформации в перпендикулярном направлении ме]Н)Ше, чем у исходного пеорисптиронанпого полимера. [c.191]

    Хрупкий стеклообразный полимер, например полистирол (ПС), деформируется до разрушения по кривой типа кривой / на рис. 12.16, б. Это типичная кривая хрупкого разрушения. Однако тот же полистирол прн более высокой температуре может обнаружить явление вынужденно-эластической деформации (см. гл. 10) и дефор-мироватьс ч по кривой типа кривой / па рнс. 12.16, а. При этом образуется шейка так же, как у полиэтилена высокой плотности. Макромолекулы полистирола в шейке также ориентированы в направлении растяжения. Если теперь из шейки вырезать образец и испытать его отдельно при обычной температуре, снян кривую а— к, то эта кривая будет иметь вид кривой 2 на рис. 12.16, о. Видим, [c.192]

    Одним из основных видов деформации в вершине трещины, растущей в хрупком полимере, является вынужденно-эластическая деформация. Несмотря на то что полимер в целом не обнаруживает ннкакн.х признаков вынужденной эластичности, в микрообъеме может наблюдаться перемещение сегментов н их последующее разрушение. Так, при нагревании до температуры хрупкости (Т = Тхр), когда шейка в образце еще не развивается, в микрообъеме в вершине трещины может развиваться значительная вынужденно-эла- [c.197]

    При вынужденно-эластической деформации некоторых стеклообразных полимеров (например, ацетата и [1цтрата целлюлозы) образования шейки не наблюдается. На деформ а гшон ной кривой в таких случаях отсутствует максимум (рис. 87). [c.211]

    К дальнейшему уменьшению тангенса угла наклона кривой растяжения. В максимуме (см. рис. 86) или в области плато (см, рис. 87) 1срквой растяжения касательная к кривой горизонтальиа, т. е. скорость вынужденно-эластической деформации становится равной полной скорости деформации. Р1апряжение, прн котором это про-исходит, называется пределом вынужденной эластичности иц. Вблизи максимума н в области спада напряжения замечается начало образования шейки. К концу спада напряжения формирование шейки заканчивается. [c.212]

    Прокатку применяют для обработки листовых термопластичных полуфабрикатов с целью придания им требуемых размеров поперечного сечения или повышения мех. св-в в направлении прокатки. В отличие от калаидрования ее осуществляют на валковых машинах, валки к-рых вращаются навстречу друг другу с одинаковой скоростью, при т-рах, не превьш1ающих т-ры стеклования и т-ры плавления. В зазоре между валками происходит уплотнение материала и ориентация его в направлении прокатки вследствие развивающихся в материале вынужденных эластических деформаций. [c.8]

    Таким образом, деформационные свонства полимера в стеклообразном состоянии можно охарактеризовать модулем упругости, 1[ределом вынужденной высокоэластичности, его изменением с температурой, ее тичннами упругой н вынужденно-эластической деформации. [c.287]

    Начальная область (область оа), представляющая собой прямолинейный участок, соответствует деформации, которая формально подчиняется закону Гука. В области аЬ тангенс угла наклона Кривой к оси абсцисс с увеличением напряження уменьшается. Это связано с началом развития в образце вынужденной эластичности. С ростом напряжения скорость развития вынужденно-эластической деформации быстро увеличивается, что приводит [c.211]

    По мерс понижения температуры величина Ов возрастает, так как для перегруппировки цепей требуются все большие напряжения. Пока долговечность (сгр, 221) материала при данном напряжении велика, развивается вынужденно-эластическая деформация. При некоторой достаточно низкой температуре напряжение, необходимое для перегруппировки участков цепи, соответствует уже настолько малой долговечности, что величина о достигает значения хрупкой прочности (аи = Очр), и происходит хрупкое разрушение материала. Температура, ниже которой по шмер разрушается под действием этого напряжения, называется температурой хрупкости (7 хр)- Прн температуре хрупкости предел вынужденной эластичности равен хрупкой прочности.  [c.213]

    По мнению А. П. Александрова, при вынужденной эластической деформации напряжение помогает макромолекулам преодолевать потенциальные барьеры, препятствующие их деформации, умен1шает количество энер1ии, требуемой для активации ценных молекул. Это, в свою очередь, приводит к падению времени релаксации т в соответствии с выражением [c.412]

    НО с образованием трещин даже при внещне хрупком разрушении. Из-за вынужденно-эластической деформации трещины раскрываются достаточно щироко (на 0,5 мк и больше). Чем больше влияние релаксационных процессов деформации, тем шире раскрываются трещины. Так как скорость релаксации экспоненциально растет с напряжением, то релаксационные процессы сущест- [c.97]

    Кроме того, отметим, что в основе явления ползучести (медле.чного увеличения длины образца), кроме процесса вынужденно-эластической деформации, лежит процесс образования множества трещин серебра . [c.99]

    В хрупком состоянии скорость роста трещин п ирсчность полимера зависят только от температуры (по уравнению П. 6, стр. 80). Температура хрупкости Г р, (см. рис. 42, гл. И) является условной границей, разделяющей два прочностных состояния твердого полимера. Так, процесс хрупкого разрушения проявляется в виде растрескивания, побеления образцов, появления трещин серебра и т. д. при температурах несколько выше С другой стороны, при температурах несколько ниже в перенапряженных местах образца (неоднородности, дефекты, трещины) наблюдается местная вынужденно-эластическая деформация, приводящая к дополнительной ориентации материала. В целом характер разрущения зависит от соотношения скоростей процессов вынужденно-эластической деформации и разрушения. [c.135]

    Переход от хрупкого разрыва к вынужденно-эластической деформации ориентированного полимера наблюдается и при изменении угла между направлением растяжения и направлением ориентации (см. рис. 80). С увеличением степени ориентации хрупкая прочность в направлении ориентации сильно возрастает, а в поперечном направлеиин к ориентации—сильно уменьшается. В результате при продольной ориентации наблюдается резкое снижение Тхр., ири поперечной—резкое повышение (см. [c.137]

    Рассматривая особенности разрушения неориентированных аморфных полимеров, Г. М. Бартенев принимает, что ниже температуры хрупкости (Гхр) полимеры ведут себя подобно хрупким твердым телам. Выше температуры хрупкости на процесс разрушения полимеров существенно влияют релаксационные процессы. В вершине растущего дефекта имеет место вынужденно-эластическая деформация. Образец покрывается так называемыми трещинами серебра. Створки трещины соединены микротяжами, которые одновременно деформируются и разрушаются. В соответствии с изложенным выше Г. М. Бартенев считает, что в различив [c.145]


Смотреть страницы где упоминается термин Вынужденная эластическая деформация: [c.158]    [c.159]    [c.150]    [c.150]    [c.156]    [c.198]    [c.200]    [c.211]    [c.213]    [c.106]    [c.334]    [c.124]    [c.227]    [c.39]    [c.213]    [c.99]   
Высокодисперсное ориентированное состояние полимеров (1984) -- [ c.7 , c.25 , c.110 , c.112 , c.115 , c.129 ]




ПОИСК





Смотрите так же термины и статьи:

Вынужденная эластическая деформация Выпотевание

Деформации вынужденно-эластические

Деформация волокон вынужденно-эластическая

Деформация полимеров вынужденно-эластическая

Кинетика вынужденно-эластической деформации

Покровского вынужденно-эластической деформации

Покровского вынужденно-эластической деформации прочности Гриффита

Покровского теория вынужденно-эластической деформации

Эластическая



© 2025 chem21.info Реклама на сайте