Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Воска, образование

    Реакции гидролиза, т. е. расщепления органических высокомолекулярных соединений действием воды, имеют большое биологическое и техническое значение. Путем гидролиза происходит распад белковых веществ, крахмала, гликогена, клетчатки, жиров, восков, глюкозидов и тому подобных веществ, причем образуются более простые низкомолекулярные соединения. Реакции гидролиза противоположны по направлению реакциям межмолекулярной дегидратации. В животных и растительных организмах между этими процессами существует биологическое равновесие. В организмах путем дегидратаций происходит образование полисахаридов, белков, жиров и других сложных соединений. Эти эндотермические по своему характеру процессы осуществляются при участии солнечной энергии, которая таким образом вовлекается в биосферу земли. Поэтому сложные химические вещества растений являются как бы аккумуляторами солнечного тепла. [c.534]


    Сложные эфиры, образованные спиртами и кислотами с длинными углеродными цепями, при комнатной температуре представляют собой твердые вещества. В их молекулах так много атомов углерода и водорода и так мало атомов кислорода, что во многом эти вещества ведут себя так же, как твердые углеводороды. Такие эфиры с длинными углеродными цепями по обе стороны эфирной группы носят название восков. (Смесь твердых углеводоро- [c.187]

    Производят ту же реакцию с кусочком воска. Образования акролеина не происходит, так как молекула воска не содержит остатка глицерина. [c.107]

    Проделывают эту же реакцию с воском. Образования акролеина не происходит. [c.57]

    Процесс битуминизации по Титову не является результатом лишь накопления остатков растительных смол и восков. Образование битумов (здесь под термином битумы подразумеваются продукты превращения гумуса, обладающие свойствами растворяться в органических жидкостях) происходит также путем превращения гуминовых кислот в битуминозные продукты при взаимодействии этих кислот с продуктами неполного разложения остальных частей гумуса (клетчатки, белков и жиров). Это превращение гуминовых кислот возможно лишь при условии, что они находятся в растворенном состоянии. При наличии значительных количеств в воде торфяника гипса последний превращает кислоты в нерастворимые в воде кальциевые соли гуминовых кислот, т. е. препятствует протеканию описанной реакции конденсации с продуктами разложения торфа. В результате образуются менее битуминизированные топлива. [c.70]

    Наиболее доступным непищевым сырьем для получения смеси высших, главным образом непредельных, спиртов является кашалотовый жир, состоящий в основном из восков, образованных из высших ненасыщенных спиртов и высших ненасыщенных кислот. [c.252]

    При обработке кашалотового жира едким натром происходит расщепление восков с образованием свободного спирта и мыла [c.135]

    Это — экзотермическая реакция. Энергия, выделяемая при образовании связей в молекуле продуктов (диоксида углерода и паров воды), больше, чем энергия, необходимая для разрыва связей в молекулах воска и кислорода. [c.203]

    Этими опытами устанавливается предполагаемая вероятность участия второго источника в образовании нормальных алканов за счет высокомолекулярных спирте в, являющихся составной частью воска. [c.37]

    Обе схемы образования угля, предложенные Бергиусом и Фишером, имеют принципиальное сходство в подходе к вопросу образования органической массы каменных и бурых углей. В обеих гипотезах она рассматривается как механическая смесь двух видов веществ гуминовых и битумных. Битумы считаются продуктом превращения жиров, восков и смол высших растений. Образование гумусовых углей рассматривается как результат двух одновременно и параллельно совершающихся процессов [1, с. 85]  [c.38]


    Однако гипотеза раздельного образования битумов только из смол и восков, сапропелитовых веществ из жиров, а гуминовых веществ — преимущественно из лигнина высших растений встречает серьезные возражения. Невозможно допустить изолированное превращение отдельных химических составных частей растений без взаимодействия между ними. Трудно принять, что только отдельные составные части растений могли участвовать в образовании торфа, бурых и каменных углей, а другие полностью разложились и не оказали никакого влияния на процессы образования углей. [c.39]

    Действительно, в природе могли протекать сложные химические реакции разложения исходных веществ, а также и синтез новых соединений в результате взаимодействия продуктов превра щения различных веществ, составляющих растение. Именно поэто му наиболее вероятно принять, что при образовании углей проис ходит взаимодействие между всеми частями растений (лигнин белки, целлюлоза, смолы, воски, жиры), если не непосредственно [c.39]

    Липтобиолиты из смол и восков. Представителем липтобиолитов на торфяной стадии является фихтелит, образованный из остатков хвойных деревьев, произраставших на торфяных болотах. Фихтелит обнаружен в ГДР и ряде торфяных болот Советского Союза. К торфяной стадии липтобиолитов относятся и различные копалы. Предполагается, что они образованы из смол тропических растений. [c.66]

    Малопреиращенные нефти нафтенового и нафтеново-ароматического типа, как правило, не содержат заметных количеств парафина, но они не содержат также сколько-нибудь перспективных количеств и восков или жирных кислот. Во всяком случае этих веществ далеко недостаточно, чтобы объяснить существование нефтей с 10—15 и даже 20% твердых углеводородов. Начинающееся превращение нефти прежде всего сказывается не только в разукрупнении молекул, что повышает содержание легких фракций, но и в образовании небольших количеств изометановых углеводородов типа церезина. Больше того, именно изометановые углеводороды в легких фракциях составляют основную массу метановых углеводородов. Нормальный парафин появляется во все возрастающих количествах уже при глубоком превращении нефти, откуда следует, что именно превращение нефти дает начало парафинам и что решение вопроса о происхождении парафина нельзя отрывать от главного вопроса о порядке и механизме превращения нефти. [c.64]

    Установлено, что чем моложе сапропелитовые образования, тем больше выход битумов. Битумы А сапропелитов резко отличаются по свойствам от битумов А других топлив. Они представляют собой смеси насыщенных высокомолекулярных жирных кислот и их ангидридов, которые содержат небольшое количество ненасыщенных соединений. В последнее время было установлено, что эти битумы также содержат некоторое количество смол и восков. [c.160]

    В качестве сырья при получении смазочных масел используются вакуумные дистилляты ипи деасфальтированные растворителем нефтяные остатки. Ароматические углеводороды, по крайней мере частично, гидрируются в циклопарафины, которые затем подвергаются гидрокрекингу с образованием удаляемых более легко кипящих продуктов, ипи гидрируются в смазочные масла, температура кипения которых лежит в заданных пределах. Нормальные парафины (воск) в основном не претерпевают изменений, и их необходимо удалить /3/. Процесс ведут при давлении 70-200 атм, температуре 350-400 , с циркуляцией 1000 объемов водорода на 1 объем углеводородного сырья. Одним из катализаторов является сульфид никеля - сульфид вольфрама, нанесенные на алюмосиликат однако разработано еще несколько процессов, на которые имеются лицензии и каждый из которых имеет свой собственный катализатор /1, 4, 5, 15, 27/. [c.270]

    Органические гипотезы происхождения нефти заслуживают внимания," потому что в молекулы живого вещества входят более или менее крупные группировки углеродных атомов, характерные и для углеводородов. Например, в жирах содержатся кислоты с 15—17 атомами углерода, а в восках их еще больше. Белки содержат менее крупные группировки, а в лигнине древесины имеются группировки циклического характера. Клетчатка и продукты ее гидролиза являются в обычном представлении неподходящим материалом для образования нефти ввиду малой стойкости к различного рода окислительным воздействиям, в том числе и биохимическому. [c.189]

    Хотя межмолекулярные силы и играют более или менее существенную роль при образовании аддуктов, однако основное значение обычно имеют геометрические факторы возможные размеры полостей в структуре хозяина и размеры молекул гостя . Грубой моделью образования аддукта может служить заполнение стеклянными шариками пчелиных сот. Возникновение при этом между стеклом и воском дисперсионного взаимодействия еще не дает основания считать заполненные шариками соты [c.159]

    Оба этих металла очень мягкие (как воск), и их можно резать ножом. При этом обнаруживается, что свежая после разреза поверхность имеет серебристо-белый металлический блеск. Однако на воздухе этот блеск сохраняется лишь несколько секунд, после чего открытая поверхность металла тускнеет и становится голубовато-серой. Появление такой окраски вызывается образованием на поверхности металла тонкой пленки оксида. Кислород, необходимый для образования этой пленки, поступает непосредственно из воздуха. [c.111]


    Для мышьяка и сурьмы кроме а-формы известны и другие полиморфные модификации. Так, при конденсации пара мышьяка на охлаждаемой жидким азотом поверхности образуются желтые, мягкие, как воск, кристаллы кз бической сингонии, подобные белому фосфору. Превращение желтого мышьяка в стабильную о -ромбоэдрическую форму обычно протекает через стадию образования так называемого черного мышьяка, также похожего на аналогичную модификацию фосфора. При 290°С черный мышьяк превращается в обычный серый металлический мышьяк. Аналогичные превращения наблюдаются и у сурьмы. [c.419]

    Растворяет иод, бром, серу, жиры, воск, гуттаперчу, смолы, каучук, камфору, белый фосфор. Смешивается с абсолютным этиловым спиртом, диэтиловым эфиром, бензолом, хлороформом, четыреххлористым углеродом, эфирными и жирными маслами. Растворим в растворах едких щелочей и сульфидов щелочных металлов (с образованием тиоуглекислых солей), мало растворим в воде (0,179% при 20 С). Пары Sg поглощаются иодом, парафином, раствором брома в КВг и особенно хорошо льняным маслом, если последним смазана поверхность стеклянной трубки. [c.340]

    Поскольку углеобразование — один из сложнейших природных процессов превращения органического материала и в этом преобразовании участвует ряд биологических, химических, физических и других факторов, по вопросу генезиса углей появились и различные теории химические, геологические, микробиологические В начале текущего столетия появились целлюлозная и лигнинная гипотеза происхождения углей. Длительная дискуссия возникла вокруг вопроса, какие растительные вещества являются исходным материалом для образования спекающихся каменных углей Фишер считал таковыми воски и смолы растений, а Берль — клетчатку растений в связи с особенностями ее превращения. По мнению Потонье, неспекающиеся среднегерманские бурые угли произошли от растений третичного периода, а каменные угли — из растений палеозоя. [c.21]

    Этот метод заслуживает предпочтения при хлорировании высокомолекулярных парафиновых углеводородов, таких, как парафиновые гачи, вазелины, озокерит, горный воск и т. д. В большинстве случаев процесс проводят под повышенным давлением [90]. Хлорированию благоприятствует применепие вельдоновского шлама или пиролюзита одновременно достигается также более полное использование хлора [91]. По другому варианту хлорирование проводят в слабощелочной среде [9 2] в этом случае достигается и отбеливающее действие, приводящее к образованию светлых продуктов. Однако эти методы до сих пор еще не приобрели практического значения [93]. [c.185]

    НИИ получения синтетической нефти из органических материалов. Особо значительными в этом отношении являются опыты К. Энглера и его учеников (1888 г.). Исходным материалом для своих опытов К. Энглер взял животные и растительные жиры. Для первого опыта был взят рыбий (сельдевый) жир. В перегонном аппарате К. Крэга при давлении в 10 аттг и при температуре 400°С было перегнано 492 кг рыбьего жира, в результате чего получились масло, горючие газы и вода, а также жир и разные кислоты. Масла было получено 299 кг (61%) уд. веса 0,8105, состоящего на 9/10 из углеводородов коричневого цвета с сильной зеленой флуоресценцией. После очистки серной кислотой и последующей нейтрализации масло было подвергнуто дробной разгонке. В его низших фракциях оказались главным образом предельные. углеводороды — от пентана до нонана включительно. Из фракций, кипящих выше 300° С, был выделен парафин с температурой плавления в 49—51° С. Кроме того, были получены смазочные масла, в состав которых входили олефины, нафтены и ароматические углеводороды, но в весьма небольших количествах. Продукт перегонки жиров под давлением по своему составу отличался от природных нефтей. К. Энглер дал ему название про- топеТролеум . Образование углистого остатка при этом не происходило, чему К. Энглер придавал особое значение, поскольку при перегонке растительных остатков (углей, торфа, древесины) в перегонном аппарате всегда образуется углистая масса. А так как в нефтяных месторождениях не наблюдается более или менее значительных скоплений угля, К. Энглер сделал вывод, что только животные жиры, без остатка превращающиеся в прото-петролиум, могли быть материнским веществом для нефти. Несколько позднее К. Энглер получил углеводороды из масел репейного, оливкового и коровьего и пчелиного воска [ ]. Штадлер получил аналогичные продукты при перегонке льняного семени. [c.311]

    Очень близки по составу к воскам кутин, которым пропитан внешний слой (кутикула) некоторых растений, и суберин — пробковая ткань коры. Кутин и суберин стойки к действию гидролизующих агентов и микроорганизмов. Высокая стойкость кутина дает основание предполагать, что он не только остается неизме-нившимся при образовании угля из растительных материалов, но и предохраняет от разрушительного действия микроорганизмов такие неустойчивые вещества, как целлюлоза. Это было обнаружено при микроскопическом исследовании угля. Отчетливо видна отлично сохранившаяся кутикула листьев, а иногда даже в неиз-менившиеся клетки целлюлозы. [c.30]

    Основой каталитической системы олигомеризации является растворимая комбинация Т1С14С С2Н5А1С12. Реакция олигомеризации этилена в а-олефины С4—Сго в присутствии титансодержащих систем протекает в среде ароматических углеводородов, хлоруглеводородов и пр. Проведение процесса в среде неполярного растворителя приводит к образованию более высокомолекулярных продуктов — ВОСКОВ и полиэтилена. При использовании каталитических систем на основе солей титана необходимо проводить олигомеризацию в области относительно низких температур (—20-ь+20 °С). Повышение температуры сопровождается увеличением средней молекулярной массы получаемого продукта. [c.323]

    Первый источник вполне реален и не может вызывать сомнений. Высокомолекулярные алканы составляют несколько процентов в растительных восках неомыляемой фракции зоопланктона и липидов водорослей. Например, в воске карнаубской пальмы они составляют лг 10%. Биосинтез алканов нормального строения в живой природе приводит к образованию соединений с нечетным числом углеродных атомов в молекуле , чем, возможно, и объясняется резкое преобладание нечетных соединений над четными в составе алканов битуминозной 1асти илов и современных морских и особенно лагунно-озерных осадков. [c.37]

    Такие вещества, как льняной воск, являются очень устойчивыми образованиями. Они способны сохраняться без значительных изменений в течение многих геологических периодов. Существует ряд доказательств большой устойчивости восков. Так, во время Крымского землетрясения в 1928 г. Черное море выбросило на берег желтую массу, при анализе которой Харкевич установил, что это пчелиный воск [11, с. 46]. Советский геолог Архангельский предполагает, что этот воск был грузом давно затонувшего корабля. Во время землетрясения остатки корабля были разрушены и воск всплыл. [c.30]

    Действие щелочных растворов на липтобиолиты исследовано очень мало. По данным Штрахе и Ланта, при кипячении смоляных и восковых липтобиолитов со спиртовыми растворами щелочей они гидролизуются с образованием продуктов омыления смол и восков. Добрянский утверждал, что щелочные растворы не действуют на органическое вещество горючих сланцев. Прониной удалось получить из волжских сланцев только 1,4% гуминовых кислот, а в ленинградских сланцах не обнаружено даже следов этих соединений [3, с. 178]. Когерман при кипячении сланца с 20%-ным водным раствором едкого кали получил белый осадок с выходом 4 /о, но этот продукт по виду не напоминает гуминовые кислоты [16, с. 78]. [c.149]

    При действии избытка 100%-ной серной кислоты при комнатной температуре нормальные первичные спирты превращаются в алкипсерные кислоты, не образуя диалкил сульфатов [8], но после длительного стояния от кислоты отслаивается сложная смесь углеводородов, относящихся главным образом к парафиновому ряду. При этерификации первичных изоспиртов с разветвленными цепями, включая изобутиловый,. изоамиловый и оптически активный амиловый спирты, кроме сложных эфиров, получаются соединения, обесцвечивающие бромную воду. Наибольшее количество этих соединений отмечено при этерификации изо-бутилового спирта. При действии серной кислоты вторичные и третичные спирты сначала превращаются главным образом в сложные эфиры, которые при стоянии в присутствии избытка серной кислоты образуют углеводороды. Маслянистый слой, медленно отслаивающийся от серной кислоты, содержит большой процент насыщенных углеводородов [9]. Водород, необходимый для их образования, освобождается путем диспропор-ционирования типа сопряженной полимеризации [10], в результате которого получаются циклоолефины, остающиеся в кислом растворе. Из цетилового спирта получается вещество с т. пл. 50°, обладающее свойствами парафинового воска. Цикло-гексанол превращается в высококинящие углеводороды [11]. Кислый сульфат, приготовленный из трифенилкарбинола [8], представляет собой сильно диссоциированную кислоту, судя по его низкому молекулярному весу в растворе сернох кислоты. Он разлагается водой, регенерируя трифенилкарбинол. [c.8]

    Таким образом, согласно этим воззрениям материалом для образования первичной нефти являются жиры и воски и лишь отчасти белковые и гуминовые вещества, образовавшиеся из клет- чатки. [c.194]

    Озокерит (земляной воск, горный воск) представляет собой минерал, образованный пористой породой, пропитанной смесью твердых углеводородов с небольшими количествами высококипящих углеводородов и смол. Месторождения озокерита редки. Он добывается в Бориславе на Дзвинячском месторождении (Западная Украина), в Узбекской ССР (Шор-синское месторождение), в Ферганском Каратау (Сель-Рохо), на острове Челекен в Каспийском море. Органическая часть озокерита выплавляется из породы, и из нее отгонкой более легких фракций и очисткой остатка получают различные сорта товарного церезина. [c.25]

    II циклогексанов11 Х углеводородов, пчелиный воск—жидкие и твердые алифатические углеводороды, канифоль - смесь углеводородои с преобладанием ароматических. Эти исследования иодтвержда от правильность теории органического образования нефти. [c.334]

    Для мышьяка и сурьмы кроме а-формы известны и другие полиморфные модификации. Так, при конденсации пара мышьяка на охлаждаемой жидким азотом поверхности образуются желтые, мягкие, как воск, кристаллы кубической сингонии, подобные белому фосфору. Превращение желтого мышьяка в стабильную -ромбоэдрическую форму обычно протекает через стадию образования так называемого черного мышьяка, также похожего на аналогичную модификацию фосфора. Если желтый мышьяк — диэлектрик, то черный обладает полупроводниковыми свойствами (АЕ = = 1,2 эВ). При 290 °С черный мышьяк превращается в обычный серый металлический мышьяк. Аналогичные превращения наблюдаются и у сурьмы. Желтая сурьма получается при пропускании воздуха через сжиженный ЗЬНз. Эта модификация чрезвычайно нестабильна и уже при 50 °С превращается в обычную серую металлическую сурьму. Черную сурьму получают конденсацией пара сурьмы на охлаждаемых подложках. Как и черный мышьяк, она обладает полупроводниковыми свойствами (АЛ =0,12 эВ), но сохраняет пх лишь до О С. Для висмута полиморфные модификации неизвестны. [c.285]

    Нафталанская нефть — густая сиропообразная жидкость уд. в. 0,925— 0,960, черного цвета с зеленоватой флуоресценцией со своеобразным запахом, слабокислой реакции. С водой не смешивается Легко растворима в бензине, хлороформе, бензоле. Растворы (1 10) прсарачны, красно-бурого цвета мяло растворима в спирте, но окрашивает его в желтый цв"т. Смешивается с глицерином, маслами, жнрами, парафином и воском. Бензольный раствор окрашен в красно-бурый цвет с синей флуоресценцией. При прибавлении к [госледнему равного объема концентрированной серной кислоты бензольный слой светлеет, а кислый окрашивается в бурый цвет, темнеющий прн хранении. (Данная реакция -образование кислого гудрона — свойственна почти всем нефтям н неочищенным нефтепродуктам). [c.108]


Смотреть страницы где упоминается термин Воска, образование: [c.512]    [c.82]    [c.330]    [c.331]    [c.377]    [c.173]    [c.29]    [c.82]    [c.413]    [c.64]    [c.466]    [c.256]    [c.77]    [c.54]   
Биохимия растений (1968) -- [ c.182 ]




ПОИСК





Смотрите так же термины и статьи:

Водород, образование при пиролизе бутана пчелиного воска

Воски

Спирты образование очистка каменноугольного воска



© 2025 chem21.info Реклама на сайте