Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ненасыщенные углеводороды классификация

    НЕНАСЫЩЕННЫЕ УГЛЕВОДОРОДЫ Классификация. Получение. Свойства. Применение [c.80]

    Следует оговориться далее, что сополимеры в большинстве случаев рассматриваются также в соответствии с этой классификацией. Так, сополимеры этилена со стиролом и другими углеводородами рассматриваются в первой группе. Сополимеры ви-нилхлорида с галоидозамещенными углеводородами рассматриваются во второй группе. Здесь же рассматриваются сополимеры винилхлорида и других галоидзамещенных углеводородов с ненасыщенными углеводородами, полимеры которых относятся к [c.9]


    Непредельные, или ненасыщенные, углеводороды—это углеводороды, в молекуле которых имеются углеводородные атомы, затрачивающие на связь с соседними атомами углерода более одной валентности — две или три, что в структурных формулах изображается соответственно двумя илп тремя черточками. Эти двойные и тройные связи называются кратными. По числу и характеру кратных связей классификация непредельных углеводородов может быть представлена схемой  [c.50]

    Весьма резко выраженная зависимость дисперсии от строения ненасыщенных частей молекул делает ее более важным классификационным признаком непредельных соединений по сравнению с молекулярной рефракцией. Существенно, что для целей классификации не требуется точного определения состава и молекулярного веса и можно пользоваться удельной или относительной дисперсией (1,48—51). Подробные системы классификации на основе удельной и относительной дисперсии разработаны пока только для углеводородов [42,43]. Классификационная табл. 7 охватывает жидкие углеводороды с нормальной температурой кипения только до 100°, но в литературе имеются подобные таблицы для углеводородов с температурой кипения до 200° [43]. [c.92]

    В этой работе мы проведем подробное сравнение электронных спектров, предсказанных по методам Хюккеля и Паризера — Парра, с экспериментальными данными, а также сравнение методов Хюккеля и Паризера — Парра между собой. Может показаться, что метод Хюккеля, как более простой, должен всегда давать менее точные результаты. Это, однако, неверно, что видно, например, из сравнения энергии возбуждения самой длинноволновой полосы интенсивного синглет-синглетного перехода в УФ-спек-трах ненасыщенных молекул и соответствующей теоретической величины, вычисленной по методу Хюккеля [2, 3]. Экспериментальные величины энергий возбуждения определялись по положению так называемой /г-полосы по классификации Клара [4]. Идентификация этой полосы сама по себе является сложной задачей и требует должного внимания. Теоретические величины энергий возбуждения вычислялись по методу Хюккеля как разности энергий между высшим из запятых и низшим из незанятых одноэлектронных уровней. Геометрию молекулы при этом рассматривали упрощенно, принимая все длины связей одинаковыми. Внутри каждого класса углеводородов, папример ароматических углеводородов, линейных полиенов и ароматических производных [c.176]


    Некоторые реагенты, используемые для выполнения реакций вычитания в шприце в целях идентификации компонентов широкого круга ЛОС различных классов, перечислены в табл. V.11. Применяя набор специфических реагентов из табл. V.11, можно надежно идентифицировать методом вычитания целый ряд компонентов сложной смеси ЛОС (альдегиды, кетоны, спирты, эфиры и углеводороды), используя технику выполнения реакций в шприце (рис. V.lO). Эти приемы позволили осуществить химическую классификацию ЛОС — обнаруживать карбонильные соединения, различать альдегиды и кетоны, идентифицировать спирты (после превращения их в ацетаты или нитрилы), обнаруживать ненасыщенные соединения, различать эфиры, олефины, алкилбензолы и парафины. [c.222]

    Обнаружены линейные корреляции между экзальтациями молекулярной рефракции и числом сопряжённых связей в углеводородах,не имеющих пространственных препятствий сопряжению.На основе полученных зависимостей предложена классификация углеводородов по эффективности сопряжения наиболее эффективно сопряжение реализуется в полиенах (транс), полиинах,хиноидных структурах, кумуленах и структурах смешанного типа в ароматических соединениях, соединённых с ненасыщенными группами в пара или транс положении,аценах и других конденсированных ароматических системах сопряжение между частями менее эффективно.Для углеводородов,имеющих пространственные затруднения сопряжению,разработан метод количественной оценки эффективности сопряжения и угла поворота между частями системы. [c.1016]

    Эта система отличается от классификации катионов и анионов в неорганическом анализе, который позволяет определить любой катион в ходе систематической обработки образца. Благодаря технике разделения можно последовательно определить несколько катионов, в то время как методом исключения можно установить присутствие или отсутствие данного аниона. Та же методика исключения применяется и в анализе функциональных групп, при этом важно знать результаты предварительных испытаний и данные качественного анализа, которые дают ценную информацию о химических свойствах вещества. Например, если в веществе не обнаружены гетероэлементы, а есть только углерод, водород и кислород, его следует отнести к группам 1—5. В случае отсутствия кислорода это должен быть алифатический или ароматический углеводород. Сначала устанавливают его характер, а затем на основании физических констант идентифицируют с одним из членов гомологического ряда. Если вен ство содержит углерод, водород и кислород, сначала устанавливают го характер ароматический или алифатический, насыщенный или ненасыщенный, а затем его испытывают на присутствие гидроксильных или кетогрупп. В присутствии гетероэлементов (азота, серы или галогенов) ситуация становится более сложной, так как наряду с гетероэлементом молекула может содержать любые другие углеродсодержащие функциональные группы. Таким образом, после обнаружения гетероэлемента вещество испытывают также на содержание других упомянутых выше функциональных групп. [c.148]

    По классификации Киселева [382], рассмотренные нами химически модифицированные адсорбенты можно отнести к двум группам. К первой принадлежат силикагели с химически насыщенной поверхностью — модифицированные фтором, алкильными и алифатическими группами. Поверхность таких адсорбентов неспецифически взаимодействует не только с молекулами, имеющими л-связи (ароматические углеводороды, азот, ненасыщенные углеводороды), но и с молекулами, имеющими свободные электронные пары (вода, спирты, эфиры и др.). Так как доля дисперсионной компоненты взаимодействия в адсорбции полярных молекул [c.177]

    По классификации Киселева [21], рассмотренные нами модифицированные адсорбенты можно отнести к двум группам. Первая группа — адсорбенты с химически насыщенной поверхностью — кремнеземы, модифицированные фтором, алкильными и алифатическими группами. Поверхность таких адсорбентов неспецифически взаимодействует не только с молекулами неполярных веществ, но также с молекулами, имеющими я-связи (ароматические углеводороды, азот, ненасыщенные углеводороды) и с молекулами, имеющими свободные электронные пары (вода, спирты, эфиры и др.). Так как доля дисперсионной компоненты взаимодействия в адсорбции полярных молекул мала, то все они на таких поверхностях адсорбируются плохо. В связи с тем, что органические радикалы отодвигают молекулы адсорбата от силоксановых групп кремнезема, являющихся основными центрами дисперсионного взаимодействия, то адсорбция молекул, адсорбирующихся только по дисперсионному механизму на таких поверхностях, также меньше, чем на гидроксилированном силикагеле. [c.163]

    В методе Петтерсопа и Рихаджа [100] общую классификацию осуществляют на основе грубого описания соединения с помощью прямоугольной таблицы [101], элементами которой являются ионные интенсивности, измеренные на неизвестном спектре для каждого номинального значения массы. Она состоит из 14 столбцов, и в каждом столбце интенсивности перечислены по значениям массы через каждые четырнадцать единиц, т. е. первый столбец содержит интенсивности ников с массовыми числами 14, 28, 42, 56,. .. второй — 15, 29, 43, 57,. .. и т.д., последний (14-й) столбец содержит интенсивности пиков с массовыми числами 27, 41, 55,.... Значения интенсивностей в каждом столбце суммируют и получаемый набор величин (51, 82, 83,. .. 8 4) используют для характеризации класса соединений, к которому принадлежит неизвестное соединение. Различные типы соединений дают разные убывающие последовательности таких сумм так, например, для насыщенных углеводородов 52>5 14><51>5з,. ., для ненасыщенных углеводородов 8н>82>81>812, а для жирных кислот 84 85>8цХ82,. ...  [c.232]


    К ароматическим системам обычно относят ненасыщенные циклические соединения, которые характеризуются высокой термодинамической стабильностью, сравнительной легкостью образования, преимущественным протеканием реакций замещения, а не присоединения по кратным связям, плоским или почти плоским строением молекул Г 130]. Иногда используют следу ющее определение ароматическими называют углеводороды, которые по химическому поведению подобны бензолу [131]. Наличие корректного критерия ароматичности дало бы возможность, с одной стороны, провести детальную классификацию углеводородов, а с другой — использовать этот критерий для прогнозирования химических свойств. [c.57]

    В соответствии с классификацией углеводородов и серосодержащих соединений по степени водородной ненасыщенности это могут быть либо углеводороды с эмпирическими формулами от С Н2п-20 До С Н2 4в, либо сернистые соединения — СдИгп-юЗ — С Игп-звЗ. [c.120]

    Классификация. Алифатические углеводороды по характеру ненасыщенных связей подразделяют на олефины, содержащие двойные связи С = С, и ацетилены, содержащие тройные связи С = С. В зависимости от числа двойных связей различают моно-олефины (алкены), диолефины (алкадиены), триолефины и т. д. В зависимости от числа тройных связей различают ацетилены (алкины), содержащие в молекуле одну тройную связь, диацетилены (алкадиины) и триацетилены, содержащие соответственно две и три тройные связи. [c.80]

    Весьхма резко выраженная зависимость дисперсии от строения ненасыщенных частей молекул делает ее более важным классификационным признаком непредельных соединений по сравнению с молекулярной рефракцией. Существенно, что для целей классификации не требуется точного определения состава и молекулярной массы и можно пользоваться удельной или относительной дисперсией (1.50) — (1.53). Подробные классификационные таблицы на основе дисперсии разработаны пока только для углеводородов [c.88]

    С. В. Лебедев в своей магистерской работе выявил общие закономерности процессов полимеризации органических соединений. Продолжая в этом направлении исследования А. М. Бутлерова и А.Е. Фаворского, С. В. Лебедев в самом начале монографии писал ...Полимеризация, как процесс направляющий частицы к более устойчивым формам, широко распространена в области органических соединений. Не боясь впасть в преувеличение, можно сказать, что большинство ненасыщенных органических соединений при тех или иных условиях может полимеризоваться одни вещества в силу условий, которые в настоящее время не поддаются учету, оказываются настолько неустойчивыми, что процесс полимеризации совершается самопроизвольно другие, для того, чтобы этот процесс мог осуществиться, требуют воздействия света, высокой температуры или таких энергичных агентов, как серная кислота, фтористый бор, безводный хлористый цинк ([142], стр. 1). С. В. Лебедев показал, что в жестких условиях полимеризуются и низшие представители олефинов. На основе своих обширных опытных данных и анализа литературных источников С. В. Лебедев разработал научную классификацию полимеризации непредельных углеводородов. Он разделил полимеризацию углеводородов на пять типов типы стирола, стильбена, ацетилена, аллена и тип дивинила. Рассмотрев каждый тип в отдельности, С. В. Лебедев основное свое внимание уделил типу дивинила, т. е. системе с сопрян енными двойными связями, которая показывает максимальную склонность к самопроизвольной полимеризации при комнатной температуре. [c.108]

    Эта особенность структуры остова цеолита, в частности поверхности больших полостей синтетических фожазитов, определяет природу ее взаимодействия с молекулами разной электронной структуры. С этой точки зрения цеолиты относятся ко второму типу адсорбентов предложенной нами классификации химии поверхности твердых тел по трем типам [7], т. е. к адсорбентам, несущим на поверхности сосредоточенные положительные заряды (катионы малого радиуса, протонпзированные атомы водорода гидроксильных групп кислого характера), расположенные около рассредоточенных отрицательных зарядов (например, около больших, комплексных анионов). Во всех этих случаях молекулы, имеющие звенья с сосредоточенной на периферии электронной плотностью, например я-связи у азота, ненасыщенных и ароматических углеводородов и свободные электронные пары у атомов кислорода воды, спиртов, эфиров, кетонов или у атомов азота аммиака, аминов, пиридина и т. п., должны проявлять качественно сходное специфическое взаимодействие с центрами сосредоточения на поверхности адсорбента положительного заряда. Действительно, характер адсорбции перечисленных молекул на поверхности каналов цеолитов качественно сходен с таковым на поверхности сульфата бария [7] (сосредоточенный положительный заряд и рассредоточенный в комплексном анионе 804 отрицательный заряд) и, как мы увидим ниже, на поверхности кремнезема (или алюмосиликатного катализатора), несущей гидроксильные группы с частично протонизированным водородом [7, 8]. Вклады классических и квантовомеханических эффектов в энергию специфических взаимодействий количественно различаются, но качественно эти взаимодействия сходны. Водородная связь является их частным случаем. [c.14]


Смотреть страницы где упоминается термин Ненасыщенные углеводороды классификация: [c.402]    [c.85]    [c.195]    [c.428]    [c.353]   
Сырье и полупродуктов для лакокрасочных материалов (1978) -- [ c.80 , c.81 ]

Сырье и полупродукты для лакокрасочных материалов (1978) -- [ c.80 , c.81 ]




ПОИСК





Смотрите так же термины и статьи:

Углеводороды ненасыщенные



© 2025 chem21.info Реклама на сайте