Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий, определение в рудах

    Определение ванадия в рудах, сталях и сплавах [33]. При pH [c.124]

    Определение титана и ванадия в рудах пероксидом водорода [c.39]

    Финкельштейн Д. Н. Фотоколориметрическое определение ванадия в рудах. Бюлл. Всес. н.-и. ин-та минерального сырья. (М-лы научно-методические и производ. лабор. геол. управлений М-ва геологии [СССР]), [c.229]


    Титриметрическое определение ванадия в рудах при помощи сол [c.5]

    Фотометрические методы используются для определения небольших количеств многих редких элементов бериллия в вольфраме и сплавах галлия, индия, таллия, редкоземельных элементов и германия в разнообразных объектах титана в горных породах, рудах, сплавах, в металлических вольфраме и цирконии тория в горных породах, цирконе и других материалах циркония в различных материалах ванадия в рудах, минералах, сплавах, сталях, металлическом цирконии ниобия в горных породах и минералах тантала в металлических цирконии, гафнии, ниобии висмута в металлическом молибдене молибдена в сплавах на основе титана, сталях и минеральном сырье селена и теллура в рудах и минералах рения в молибденсодержащих продуктах и в сплавах с танталом или вольфрамом. [c.22]

    Титриметрическое определение ванадия в рудах [c.176]

    Для быстрого приближенного определения малых количеств титана в других железных рудах навеску 0,5—1,0 г сплавляют с бисульфатом калия и сплав растворяют в 10%-ной серной кислоте. Отфильтрованный раствор обрабатывают фосфорной кислотой, перекисью водорода, как описано в разд. VI, и полученную окраску сравнивают с окраской стандартов, приготовленных в тех же условиях, что и анализируемая проба. Нерастворимый остаток от бисульфатного сплавления может еш,е содержать следы титана в то же время небольшое количество ванадия в руде может привести к завышенным результатам. [c.169]

    Осаждение в виде ванадата закиси ртути в нейтральной и слабокислой средах при взаимодействии ионов ванадия (V) и ртути (I) образуется осадок ванадата ртути. В силу трудности нолучения осадка определенного состава его прокаливают до УоО.,. Определению ванадия мешают Сг, Аз, Р, Мо, и У. По степени точности он превосходит другие весовые методы и применяется для определения ванадия в рудах, минералах, чугунах и сталях. [c.463]

    Метод пригоден для определения молибдена и ванадия в рудах и горных породах. [c.199]

    Потенциометрическое титрование марганца, хрома и ванадия широко применяют при анализе сплавов, минералов, руд и прочих технически важных материалов, после разложения которых определяемые компоненты, как правило, переходят в раствор в степенях окисления марганец(П), хром(III), ванадий(V) и частично(1У). Определение основано на титровании стандартным раствором соли Мора после переведения их в высшую степень окисления. [c.132]


    Осаждение гидроокисей. Осаждение гидроокисей широко применяется и в качественном, и в количественном анализе для открытия, отделения и определения катионов. В некоторых случаях разделение катионов основано на амфотерном характере некоторых окислов металлов. Так, например, железо отделяют от ванадия, молибдена, алюминия и т. п. элементов, обрабатывая раствор избытком ш,елочи. В других случаях разделение элементов основано на различной растворимости гидроокисей. Так, при анализе многих руд, металлов, шлаков, известняков и т. п. материалов, для отделения алюминия и железа от марганца, магния, кальция и других элементов используют то обстоятельство, что гидроокиси большинства трехвалентных металлов значительно менее растворимы, чем гидроокиси многих двухвалентных металлов. Слабые основания, как, например, гидроокись аммония, пиридин (С Н Н) и др., количественно осаждают гидроокиси алюминия и железа, тогда как ионы кальция, магния и многих Других двухвалентных элементов остаются в растворе. [c.94]

    Менее точным, но весьма распространенным методом восстановления, является восстановление железа дихлоридом олова. Мешают определению ванадий, молибден и вольфрам, которые иногда содержатся в небольших количествах в железных рудах и также восстанавливаются дихлоридом о,иова. [c.403]

    Описан ряд методов фотометрического определения алюминия в железных рудах с эриохромцианином R [463, 808, 855]. Определение проводят при pH 6, многие мешающие элементы маскируют с помощью тиогликолевой кислоты [808,855]. На ванадий вводят поправку, для чего готовят раствор как для определения алюминия, но добавляют 2 мл 2,4%-ного раствора NaF, доводят до метки и измеряют оптическую плотность по сравнению с холостой пробой. Значение этой оптической плотности вычитают из оптической плотности анализируемого раствора. [c.196]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    Уиллард и Гибсон предложили методику определения хрома и ванадия в хромитовых рудах и сталях. Они сообщили, что хром и ванадий могут быть полностью окислены кипящей 70%-ной хлорной кислотой до хромовой и ванадиевой кислот. Хром отделяли от ванадия, марганца и железа осаждением в виде хромата свинца из 1 М раствора хлорной кислоты. [c.122]

    При анализе руд и других материалов, содержащих большие количества ванадия, уран отделяют осаждением фосфата уранила или выделяют уран в виде труднорастворимого урано-ванадата кальция из уксуснокислого раствора, а затем отделяют уран от ванадия осаждением фосфата уранила (см. подробнее стр. 267). Приме-Бение комплексона III в качестве маскирующего агента при осаждении уранила в виде фосфата позволяет отделить уран не только от V, но и от Ре, А1, Сг (III), N1, Со, редкоземельных элементов, Сг (VI) и др. Выделение двойных фторидов, например МаР-ир4 или ир4, соосаждением его с СаРа из кислых растворов дает возможность отделить уран от 2г, Та, Т1, Мо и др., что может быть использовано при определении его в рудах, содержащих большие количества 2г, Та и др. [c.347]


    Осаждение урана в виде ураниламмонийванадата целесообразно применять для выделения его из богатых ванадием руд. Этот метод позволяет избежать предварительного отделения ванадия. Определение заканчивают обычно прокаливанием осадка ураниламмонийванадата и взвешиванием в виде УаОз 21)0,. Методика осаждения урана ванадатом аммония приведена в разделе Весовые методы определения , [c.279]

    Описанные выше реагенты применяют для определения ванадия в рудах [33, 855], сталях [33, 389, 455], феррованадии [8551, глауконите (0,013%) [464], железе [899], медных рудах [703], жаропрочных сплавах на железной (0,17—0,71%) и никелевой (0,06—0,49%) основах [364], Т1С14 [335, 3531, титане (п-10 %) [352], урановых > сплавах (0,025—0,1%) [288], нефти [883, 912]. [c.123]

    Технеций, по своим химическим свойствам близкий к рений, может быть отделен от молибдена по методу Мелоха и Пресса [37, 47 ]. Аттебери и Бойд [8] предложили метод разделения рения и технеция, основанный на элюировании сульфатом аммония и тиоцианатом аммония. Подробно изучалось также разделение пертехнетата и неррената элюированием перхлоратными растворами [96 ]. Это разделение лучше проводить с использованием смешанных растворителей — нанример, водно-этанольных смесей [85]. В литературе описаны также отделения молибдата от вольфрамата [18, 48] и перманганата [75], не представляющие, однако, большого интереса для аналитика. С.ледует отметить, что в кислой среде (pH < 2) ванадий (V) не поглощается анионитами в С1-форме, в то время как хромат-ионы поглощаются количественно. Это обстоятельство может быть использовано для упрощения определения ванадия в рудах и сталях [117]. [c.353]

    Алимарин И. П. и Кузнецов Т. К. Амперометрическое определение железа, хрома и ванадия в рудах, чугунах и сталях. Ре- фераты докладов на Совещании по электрохимическим методам анализа 10—12 января 1950 г. М.—Л., Изд-во АН СССР, [c.123]

    При малых количествах ванадия этой ошибкой можно пренебречь, при больших же, если содержание ванадия в руде известно, в результат определения железа необходимо внести поправку, исходя из того что 1 мг V2O3 эквивалентен 0,878 мг РегОз, либо предварительно отделить ванадий от железа. Для этого прокаленный осадок окислов Ре, А1, Ti, V и т. д. сплавляют с безводным карбонатом натрия, плав выщелачивают водой и фильтруют. Ванадий (и незначительное количество железа) при этом переходит в раствор. В полученном растворе ванадий определяют фотометрическим методом. [c.34]

    Изучено взаимное влияние меди и ванадия при амперометри-ческом титровании, а также влияние различных элементов, сопутствующих им в сырье и продуктах никелевого производства. Оказалось, что медь и ванадий в выбранных условиях титруются суммарно, даже если исходное соотношение юс равно 1 1. ЮОО-нрат-ные количества цинка, кадмия, никеля, кобальта и свинца не мешают определению меди и ванадия. Титан препятствует определению меди при соотношении 1 25, а ванадия - 1 100.- Определению ванадия не мешает алюминий до соотношения 1 1 и молибден до соотношения 1 3. Железо мешает определению ванадия и меди. Учитывая полученные результаты, были предложены методики определения меди и ванадия в рудах и различных продуктах никелевого производства. [c.77]

    Описан также метод определения ванадия, основанный на образовании окрашенного в красно-фиолетовый цвет соединения после восстановления фосфорованадиевовольфрамового комплекса хлоридом олова (П). Метод пригоден для определения ванадия в рудах [33, 37]. [c.231]

    В настоящее время для определения ванадия в рудах получили широкое распространение фотометрические методы (см. доп. к разд. IV). С успехом применяется фосфорованадиевовольфраматный метод, описанный в [32, 45]. По прописи Д. Н. Финкельщтейна и [c.234]

    Разработаны многочисленные методики полуколичественного и количественного определения ванадия в самых различных объектах указань способы подготовки проб, источники возбуждения, аппаратура и аналитические пары спектральных линий дана оценка точности получаемых результатов. При анализе окисных и силикатных руд следует иметь в виду, что кривая летучести ванадия напоминает кривые испарения Ре, N1 и Со. Для определения ванадия в рудах и минералах рекомендуют использовать, в первую очередь, характерную группу линий 3183,41 3183, 98 и 3185,40 А [63]. Определение в ч е р н ы X спл авах в зависимости от содержания ванадия, производят при помощи активизированной дуги или конденсированной искры. При малом содержании аналитическими парами служат линии V 3110,7 А — Ре 3083,74 А V 3185,4 А — Ре 3184,9 А и др. при больших содержаниях V 3914 А —Ре 3913, 2А  [c.476]

    В полученном солянокислом растворе непосредственно определяют железо. Очень редко приходится иметь дело с мешающими элементами и устранять их влияние. К таким элементам относятся ванадий, молибден и вольфрам, которые иногда могут находиться в незначительном количестве в железной руде. При восстановлении железа двухлористьш оловом эти элементы также восстанавливаются до низших степеней окисления и затем титруются перманганатом. В случае их присутствия анализ усложняется и для определения железа приходится пользоваться другими методами или вводить ряд дополнительных операций, которые подробно рассматриваются в специальных курсах анализа. [c.382]

    Ди1карбоксидифениламин, названный, нами вана-докс , впервые синтезирован Ульманом [II. Ванадокс является селективным фотометрическим реактивом для определения ванадия (V) в сильнокислых средах и может быть применен при анализе сложнолегированных сталей и титано-магнетитовых руд [2]. [c.63]

    К анализируемому раствору прибавляют 20 ял 10%-ного раствора комплексона III, 1 М. НС1 или 1 М ЫН40Н до pH 3,5—3,9 и 10 ял 50%-ного раствора роданида аммония. Раствор перемешивают, помещают в делительную воронку, разбавляют до 50 мл водой и прибавляют 10 ял раствора экстрагента. Экстракт фотометрируют при 350 ммк, используя в качестве раствора сравнения раствор контрольного опыта. Ряд элементов, таких как Hg, Аи, Р1, мешают определению. Присутствие Ag, Си, N1, Сс1, РЬ, В1, Ре(1П), Сг(1П), Ьа до 2000 мг не мешает определению. Алюминий не мешает до 100 мг, торий и ванадий (V) —до 80 мг. Метод может быть применен для определения урана в окиси тория и в рудах. [c.118]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Фотометрическое определение в рудах в форме сульфата [745]. Навеску руды разлагают смесью азотной и соляной кислот и раствор выпаривают с серной кислотой. Осаждают медь раствором тиосульфата натрия. При этом железо восстанавливается до двухвалентного состояния. Измеряют оптическую плотность полученного раствора Со804 (после фильтрования) при 520 ммк. Не мешают мышьяк, сурьма, магний, алюминий, кальций, ци к, кадмий, натрий, калий и титан. Допустимо до 0,5 мг/мл марганца и 0,3 мг/мл вольфрама. Мешают хром и ванадий собственной окраской. При больших количествах никеля оптическую плотность измеряют при двух длинах волн— при 400 и 520 ммк и затем вычисляют содержание кобальта. [c.180]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Предложен метод определения фосфора в хромовых рудах и концентратах, а также пятиокиси ванадия, с использованием катионита КУ-2 для отделения Сг или V [62]. При анализе V2O5 перед пропусканием через катионит V(V) восстанавливают до V(IV) раствором NH20H-H 1. Фосфор, прошедншй в фильтрат, определяют фотометрически в виде фосфорномолибденового комплекса, восстановленного тиомочевиной. [c.112]


Библиография для Ванадий, определение в рудах: [c.136]   
Смотреть страницы где упоминается термин Ванадий, определение в рудах: [c.124]    [c.116]    [c.136]    [c.273]    [c.180]    [c.124]    [c.846]    [c.336]    [c.180]    [c.61]   
Колориметрический анализ (1951) -- [ c.273 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадий определение

Ванадий рудах

Ванадия руды



© 2025 chem21.info Реклама на сайте