Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Колонна унос жидкости

    САР — рабочая линия концентрационной части колонны без уноса жидкости С А Р — рабочая линия отгонной части колонны без уноса жидкости GQF — рабочая лпния концентрационной части колонные уносом жидкости Q F — рабочая линия отгонной части колонны с уносом жидкости. [c.85]


    На величину и (ВЭТТ) влияют такие факторы, как ско-рость паров по колонне, унос жидкости паром, концентрация, количество орошения, конструкция тарелок, физические свойства разделяемых продуктов, взаимное направление потоков жидкости и пара и т. д. Многие исследователи пытались выделить факторы, имеющие решающее значение, и в зависимости от них определять эти коэффициенты. Например, к таким факторам относили молярную вязкость и относительную летучесть компонентов, изменение уровня жидкости по длине тарелки и др. Однако до настоящего времени надежных зависимостей для определения этих коэффициентов не удалось получить. [c.67]

    Увеличение глубины отбора светлых и повышение качества масляных фракций в вакуумных колоннах достигается за счет улучшения условий нагрева и испарения нефти в печи, движения парожидкостной смеси в трансферном трубопроводе от печи до колонны и улучшения конструкций внутренних устройств колонны (тарелок, насадок и сепараторов жидкости). Основная цель проводимых мероприятий — обеспечить высокую долю отгона без заметного разложения углеводородов при минимальном уносе жидкости на нижнюю тарелку концентрационной части колонны. [c.177]

    Как уже было отмечено, качество масляных фракций существенно зависит от надежной работы отбойного устройства, установленного над вводом сырья в питательной секции колонны. Характерным в этом отношении являются данные, полученные при обследовании трех промышленных вакуумных колонн с сетчатыми отбойниками из вязанных рукавов с общим пакетом высотой 100—150 мм [49]. На рис. П1-24 представлена эффективность сепарации жидкости т) (%) на отбойнике в зависимости от скорости паров ш (м/с) в свободном сечении колонны. Эффективность оценивалась по уносу капель жидкости, определяемому коксуемостью паров (отбираемых до и после отбойника). Как видно из рисунка, наибольшая эффективность сепарации соответствовала изменению скорости паров в пределах 0,9—1,8 м/с. В этих условиях унос жидкости составлял порядка 0,4 кг на 1 кг пара. Дальнейшее увеличение скорости паров резко снижало эффективность сепарации капель жидкости до 16%, коксуемость паров до и после отбойника составляла при этом 5,86 и 5% соответственно. В связи с этим следует отметить, что особое значение для эффективной сепарации имеет правильно выполнен-ный- расчет зоны питания колонны и выбор основных размеров отбойного устройства. [c.178]


    На рис. 111-25 показаны результаты опытных пробегов вакуумной колонны с сепаратором (/) и без сепаратора (2) в секции питания [48], показавшие, что наличие сепаратора практически полностью задерживает унос жидкости на вышележащую тарелку. Остаточное содержание металлов и асфальтенов в газойле, очевидно, уже не зависит от эффективности сепарации отбойника, так как оно вызывается наличием летучих порфириновых соединений в паровой фазе и мелких витающих капель жидкости. Как видно из рисунка, предельная нагрузка зоны питания с сепаратором, при которой уровень содержания металлов и асфальтенов в газойле не меняется, составила / с = 0,15. В аналогичных условиях при отсутствии сепаратора унос жидкости и содержание металлов в газойле резко возрастают уже при нагрузках, соответствующих с = 0,085. [c.179]

    Режим газовых струй и брызг наблюдается при высоких нагрузках по газу. В этом случае газ движется через жидкость в виде струй, которые выходят на поверхность пены, пена при этом разрушается. Жидкость интенсивно накапливается на тарелке, затрудняется ее переток. Наблюдается захлебывание колонны и унос жидкости на вышележащую тарелку. [c.68]

    Размеры оборудования. При расчете размеров абсорбционного оборудования поперечное сечение аппарата и его высота определяются раздельно. Строго говоря, все существующие для этого методы расчета являются по существу эмпирическими и зависят от конструкции и внутреннего устройста абсорбера. Поперечное сечение насадочных колонн находят гидравлическим расчетом в условиях захлебывания, а сечение тарельчатых колонн—путем расчета в условиях уноса жидкости газом или на основании выбранного коэффициента полезного действия ступени. Ни один из этих методов расчета не связан непосредственно со скоростью процесса абсорбции, за исключением того, что поперечное сечение определяет линейную скорость потоков, которая в свою очередь влияет на скорость массопередачи. [c.182]

    Газопроводящий тракт плиты. Выбор способа прохода газа Через ороситель важен для рационального использования и проектирования плит. При малых и больших нагрузках колонны по жидкости и газу часто применяют плиты с патрубками переливного действия (см. рис. 2А,д и е), у которых жидкость и газ движутся противоточно. Работа таких плит лимитирована капле-уносом (как правило, недопустимым), а также опасностью захлебывания патрубков оросителя. [c.80]

    В колоннах с провальными тарелками с достаточной достоверностью можно принять поршневое движение газа и полное перемешивание жидкости на каждой ступени. В этом случае, пренебрегая влиянием уноса жидкости, при большом числе тарелок в колонне движущую силу можно рассчитывать как для противоточного аппарата с непрерывным контактом фаз. Оценочный расчет показывает, что в нашем примере число тарелок велико, поэтому можно воспользоваться указанным приближением и определить движущую силу как среднелогарифмическую разность концентраций (см. раздел 1.2). [c.109]

    Относительный унос жидкости е в тарельчатых колоннах определяется в основном скоростью пара, высотой сепарационного пространства и физическими свойствами жидкости и пара. В настоящее время нет надежных зависимостей, учитывающих влияние физических свойств потоков на унос, особенно для процессов ректификации. Для этих процессов унос можно оценивать с помощью графических данных, представленных на рис. VП.7 [5]. По этим данным унос на тарелках различных конструкций является функцией комплекса т /тНс-Коэффициент гп, учитывающий влияние на унос физических свойств жидкости и пара, определяют по уравнению [c.134]

    При построении математического описания обычной ректификационной колонны с одним вводом питания без промежуточных отборов продуктов (см. рис. П-11) обычно принимают следующие допущения флегма подается при температуре кипения давление в колонне постоянно по высоте имеет место полное перемешивание жидкости на тарелке и полное вытеснение по пару, двигающемуся в слое жидкости на тарелке питание поступает в колонну в виде равновесной парожидкостной смеси кипящей жидкости или насыщенного пара унос жидкости с тарелок отсутствует теплота смешения потоков пара и жидкости равна нулю жидкая и газо- [c.75]

    При работе колонны в области предельных нагрузок необходимо учитывать величину уноса жидкости. Эмпирические зависимости отражают влияние величины уноса на эффективность тарелки. [c.79]

    Важным параметром, определяющим работу ректификационных колонн в области предельных нагрузок, является унос жидкости паром с тарелок. Обычно унос учитывается в виде степенной функции от скорости пара. При этом показатель степени порядка трех. Наиболее существенно унос жидкости сказывается при расчетах разделения смесей с большим диапазоном температур кипения компонентов. При этом еще более резко изменяется величина уноса по высоте аппарата, что значительно снижает разделительную способность отдельных участков колонны. [c.303]


    Унос жидкости. Количество уносимой жидкости может быть рассчитано по параметру, характеризующему захлебывание колонны, т. е. в зависимости от безразмерного комплекса  [c.333]

    На рис. 145 представлена зависимость уноса жидкости от режима работы колонны. [c.333]

    Для повышения эффективности тарелок за счет снижения перемешивания на них используются тарельчатые колонны, в которых пар выходит из-под прорезей в направлении движения жидкости на тарелке. Помимо этого, за счет кинетической энергии струи пара скорость жидкости на тарелке возрастает, что позволяет увеличить нагрузку колонны по жидкости. Унос в таких колоннах ниже, чем в обычных колпачковых. [c.358]

    При увеличении скорости газа за счет скоростного напора движение жидкости по тарелке ускоряется и часть жидкости движется вместе с газом. Высота подъема жидкости у слива достигает 200—250 мм. Жидкость или сливается в перелив спокойно (см. рис. 167, а), или ударяется о стенку колонны при одновременном движении с газом (см. рис. 167, б). В последнем случае над сливом образуется зона уплотнения газо-жидкостного потока, которая является источником интенсивного уноса жидкости. [c.359]

    Основное требование к конструктивному оформлению всех тарельчатых колонн состоит в том, что выбранное межтарельчатое расстояние должно практически исключать унос жидкости с тарелки на тарелку. При размещении тарелок на небольшом расстоянии друг от друга поток пара уносит частицы жидкости на вышележащую тарелку, что значительно снижает к. п. д. тарелок. [c.352]

    Основные требования, предъявляемые к конструкции узлов ввода пара и жидкости в колонну обеспечение равномерной рвт боты массообменных тарелок, предотвращение повышенного уноса жидкости. [c.339]

    Сырье в колонну можно вводить в жидкой или паровой фазах, а также в парожидкостном состоянии. В последнем случае конструкция узла ввода должна обеспечить хорошую сепарацию жидкой фазы от паровой, предотвратить унос жидкости на выше  [c.339]

    Во избежание уноса жидкости при эксплуатации абсорбционной колонны скорость газа должна быть несколько меньше рассчитанной ( 20%)  [c.162]

    Для исключения уноса жидкости из аппарата в верхней части насадочной колонны, над оросителем, устанавливают сепарационные устройства инерционные, центробежные или комбинированные сепараторы. Чаще для выделения капельной взвеси из газового потока используют инерционные сепараторы или насадку, называемую отбойной, а также слои металлической сетки. [c.107]

    Высота колонны зависит от числа и типа ректификационных тарелок в колонне, а также расстояния между ними. Для обеспечения хорошей ректификации расстояние между тарелками должно быть таким, чтобы не было уноса жидкости с нижележащих тарелок на вышележащие оно зависит от конструктивного расположения смотровых люков и др. Обычно это расстояние принимается от 0,3 до 0,9, чаще всего 0,5—0,7 м. Если эта величина известна, то общую рабочую высоту колонны (Я, м) можно определить по формулам [c.56]

    На рис. У11-5 показана область устойчивой работы контактных тарелок с переливными устройствами. Максимально допустимая скорость пара в колонне (линия ВС) определяется величиной допустимого уноса жидкости, которая обычно принимается равной 10 %. Линия АВ определяет минимально допустимые скорости пара, соответствующие 10 % провалу жидкости. Справа область устойчивой работы ограничена линией СО, которая соответствует максимальным нагрузкам по жидкости, соответствующим 85 % режима захлебывания . Линия АВ определяет минимальные нагрузки по жидкости, при которых на тарелке обеспечивается устойчивый барботажный слой и отсутствует проскок пара. Нагрузки по пару и жидкости, соответствующие координатам любой точки внутри области, обеспечивают устойчивую работу аппарата. [c.226]

    Межтарельчатый унос жидкости. Максимальная скорость движения паров лимитируется величиной уноса жидкости потоком паров, зависящей от конструкции тарелки, характеризуемой долей зеркала барботажа г/ в общем сечении колонны, от глубины барботажа, плотностей паров и жидкости, а также вязкости паров и поверхностного натяжения жидкости. Вынос жидкости в межтарельчатое пространство в основном зависит от скорости пара при выходе из слоя жидкости, которая определяется величиной зеркала барботажа. Чем меньше доля зеркала барботажа /, тем с большей скоростью выходят из слоя жидкости пары и тем самым растет величина уноса жидкости из слоя. [c.247]

    Оценка оптимальной величины уноса по уравнению (VII.И) показывает, что с точки зрения минимальных затрат целесообразна работа ректификационной колонны при сравнительно высокой величине уноса жидкости, равной примерно 0,2 —0,3. [c.248]

    Полученный по приведенным уравнениям диаметр колонны округляют до ближайшего стандартного и затем проверяют на приемлемость при расчете переливных устройств, уноса жидкости потоком паров, сопротивления тарелки и т.д. Для стальных аппаратов рекомендованы значения диаметров от 400 до 1000 мм через каждые 100 мм, от 1200 до 4000 мм через 200 мм. 2500, 4500, 5000, 5600, 6300 мм, от 7000 до 10000 мм через 500 мм, от 11000 до 14000 мм через 1000 мм, от 16000 до 20000 мм через 2000 мм. [c.258]

    Влияние уноса жидкости на число тарелок ректификационных колонн [c.160]

    N—реальное число тарелок в колонне, работающей без уноса жидкости  [c.205]

    Флегмовое число по-разному влияет на капиталовложения и эксплуатационные расходы, необходимые для осуществления заданного разделения. Например, при увеличении флегмового числа эксплуатационные расходы увеличиваются, но уменьшается число тарелок, а следовательно, уменьшаются и капиталовложения. В то же время при увеличении флегмового числа в колонне возрастает объем паров и, следовательно, при заданных диаметрах колонны может увеличиваться унос жидкости вследствие этого нужно уменьшить производительность колонны или увеличить ее диаметр. Оптимальное флегмовое число рассчитать сложно. Его можно определить лишь при использовании машинных методов расчета. При проектировании установок ректификации ароматических углеводородов Се флегмовое число обычно получается в пределах 1,2—1,5Д ин- [c.77]

    При каталитическом крекинге сырья, полученного вакуумной перегонкой с большой глубиной отбора, выход дизельных фракций больше, чем выход бензина. Образование среднедистиллятных фракций при каталитическом крекинге характерно для этого процесса. При подготовке сырья следует учитывать, что с углублением отбора дистиллята резко возрастает содержание в нем металлов. Однако усовершенствование вакуумных ректификационных колонн позволяет уменьшить унос жидкости и улучшить качество вакуум- [c.23]

    Унос жидкости в ректификационных колоннах. Унос жидкости даже е езначителыных количествах ведет к ухудшанию процесса ректификации. [c.281]

    О четкости разделения мазута обычрю судят по фракционному составу и цвету вакуумного газойля. Последний показатель косвенно >арактеризует содержание смолисто—асфальтеновых веществ, то сть коксуемость и содержание металлов. Металлы, особенно никель у< ванадий, оказывают отрицательное влияние на активность, селективность и срок службы катализаторов процессов гидрооблаго — раживания и каталитической переработки газойлей. Поэтому при эксплуатации промышленных установок ВТ исключительно важно уменьшить унос жидкости (гудрона) в концентрационную секцию вакуумной колонны в виде брызг, пены, тумана и т.д, В этой связи вакуумные колонны по топливному варианту имеют при небольшом числе тарелок (или невысоком слое насадки) развитую питательную секцию отбойники из сеток и промывные тарелки, где организуется рециркуляция затемненного продукта. Для предотвращения попадания металлоорганических соединений в вакуумный газойль иногда г водят в сырье в небольших количествах антипенную присадку типа силоксан. [c.186]

    Колонны, работающие при прямотоке паровой и жидкой фаз, разработаны Жаворонковым и Малюсовым [66]. Они предложили следующие контактные устройства насадки с вертикальными каналами круглого или прямоугольного сечения, в которых потоки жидкости и пара движутся снизу вверх, и насадки с каналами, снабженными направляющими устройствами, обеспечивающими перекрестное движение потоков фаз за счет спиралеобразного течения и диспергирования потока жидкости. В работе этих авторов приведены экспериментальные данные и методы расчета колонн с такими контактными устройствами. Указано также, что наибольшая трудность при эксплуатации данных колонн заключается в необходимости предотвращения уноса жидкости с одной ступени разделения на другую. [c.359]

    При эксплуатации промышленных установок ВП исключительно важно уменьшить унос жидкости (брызгиу пена, туман) в концентрационную секцию колонны. В связи с этим в секции питания устанавливают отбойники из сетки и промывные тарелки, где организуется рециркуляция затемненного тяжелого газойля. Для предотвращения попадания металлоорганических соединений в вакуумный газойль на некоторых зарубежных установках вводят в сырье в небольших количествах антипенную присадку типа силоксан. Требуемая глубина отбора вакуумного газойля без заметного его разложения может быть обеспечена за счет улучшения условий нагрева и испарения мазута в печи, движения парожидкостной смеси в трансферном трубопроводе [c.47]

    Принимая во внимание, что обычно известны состав разделяемой смесл и условия разделения, выбирают тип тарелки, наиболее подходящий к рабочим условиям процесса, и межтарельчатое расстояние. Зная эти величины, можно определить предельно допустимую скорость, при которой наступает резкий унос жидкости на выше расположенную тарелку (это явление граничит с явлением захлебывания насадочной колонны). Для расчета предельно допустимой скорости рекомендуются уравнения, предложенные различными исследователями. Для ситчатых тарелок, например, можно использовать уравнение Киршбаума  [c.336]

    Ситчатые колонны отличаются простотой устройства и высокой эффективностью. Основной их недостаток заключается в том, что они удовлетворительно работают лишь в ограниченном диапазоне нагрузок. При низких нагрузках, когда скорость газа мала, жидкость протекает через отверстия и работа колонны нарушается. При больших нагрузках гидравлическое сопротивление тарелки сильно возрастает, причем наблюдается значительный унос жидкости (хотя на итчатых тарелках унос меньше, чем на колпачковых тарелках). Другой недостаток ситчатых колонн состоит в том, что отверстия в тарелках легко забиваются. [c.601]

    В ректификационной колонне обычно жидкость уносится потоком паров с тарелки на тарелку, что приводит к уменьшению движущей силы масообмена и требует для обеспечения заданной четкости разделения увеличения числа тарелок или флегмового числа. Количественно оценить влияние уноса на работу ректификационной колонны можно по любому из этих показателей наиболее просто это сделать по изменению числа тарелок при неизменных прочих показателях. [c.160]

    Ва кнейшим элементом расчета размеров ректификационной колонны является выбор скорости движения паров в колонне. Чем больше скорость, тем меньший диаметр требуется в колонне. Более высокие скорости способствуют также более эффективному контактированию паровой и жидкой фаз, однако с увеличением скорости движения паров увеличивается механический унос жидкости на вышележащую тарелку, что уменьшает движущую силу процесса и требует увеличения числа тарелок. [c.201]

    У])авненио (7.8) показывает, что с точки зрения минимальных затрат целесообразна работа ректификационной колонны со сравнительно высокой величиной уноса жидкости. Так, при к. п. д. тарелкп = 0,5 и величине fio = 0,5 0,8 для концентрационной части колонны опт = 0,2 0,32 для отгонной части колонпы допустимы и более высокие величины уноса жидкости (Во > 1). [c.205]

    Типичной областью применения аэрозольных фильтров является улавливание туманов, состоящих из крупных капелек, образующихся в абсорбционных и ректификационных колоннах. Некоторые колонны, работающие по принципу эффективного рассеивания жидкости, активно способствуют уносу жидкости, поэтому в них предусматривают эффективные каплеотбойные устройства. [c.373]


Смотреть страницы где упоминается термин Колонна унос жидкости: [c.80]    [c.193]    [c.173]    [c.223]    [c.86]    [c.252]    [c.46]    [c.610]    [c.248]   
Получение кислорода Издание 4 (1965) -- [ c.102 ]

получение кислорода Издание 4 (1965) -- [ c.102 ]




ПОИСК







© 2025 chem21.info Реклама на сайте