Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновские трубки спектроскопии

    Рентгено-флуоресцентная спектроскопия (РФС) приобретает все большее значение в анализе следовых количеств элементов, В качестве источника возбуждения используют обычную рентгеновскую трубку или чаще радиоактивные изотопы. Этот метод относится к неразрушающим и позволяет определять содержание многих элементов это обеспечило ему прочное положение при проведении серийных анализов твердых веществ. Предел обнаружения элементов во многих случаях составляет >10 млн . Но и в этом методе необходимо применять эталоны. В сочетании с химическими методами концентрирования (например, с осаждением с малорастворимыми сульфидами) дает хорошие результаты при анализе жидких или растворенных проб во многих случаях можно снизить предел обнаружения на несколько порядков, если удается взять для анализа достаточно большую пробу (например, при анализе родниковой, речной, морской воды на содержание следовых количеств элементов). [c.417]


    Механизм возбуждения. Чтобы атом испустил квант рентгеновского излучения hv, ему необходимо сообщить энергию. Это можно осуществить облучением пробы потоком электронов эмиссионная спектроскопия) или рентгеновским излучением достаточной энергии рентгенофлуоресцентная спектроскопия). Практически ввиду более легкого осуществления используют только второй способ возбуждения. Его преимущество заключается еще в том, что возникающий спектр флуоресценции имеет только характеристические спектральные линии, в то время как на эмиссионный спектр накладывается спектр непрерывного излучения. В рентгенофлуоресцентной спектроскопии пробу облучают полихроматическим излучением рентгеновской трубки и наблюдают возникающее вторичное излучение. Для перемещения электрона с занимаемого им основного уровня необходимо, чтобы энергия поглощаемого рентгеновского кванта hv была по меньшей мере равна работе ионизации. Если поглощаемая энергия больше, то избыточная энергия высвобождается в виде кинетической энергии фотоэлектрона. По истечении 10 с ионизированный атом ступенчато переходит в основное состояние. Рассматривая уменьшение энергии электрона при его переходе с верхнего уровня на нижний, можно заметить, что рентгеновский квант излучается не при каждом электронном переходе. Эффективной в этом отношении оказывается только часть переходов (/ij). Остальное число переходов п — () вызывает эмиссию электронов из внешних электронных оболочек атома, поскольку они воспринимают всю энергию, освобождающуюся при осуществлении внутренних электронных переходов, и вследствие этого отрываются от атома оже-эффект). Под выходом флуоресценции W понимают отношение /if/n. Величина W для различных оболочек не одинакова и возрастает с увеличением атомного номера элемента. Зависимость выхода флуоресценции для /С-оболочки от атомного номера элемента можно представить следующей полу эмпирической формулой  [c.201]

    Принципиальная схема рентгеновского спектрометра. Первичное излучение рентгеновской трубки вызывает флуоресценцию элементов, входящих в состав пробы. Излучение флуоресценции проходит вдоль набора продольных плоскопараллельных пластин, падает на кристалл-анализатор и, отражаясь от него, разлагается в спектр. Отражающееся в различных направлениях излучение определенных длин волн регистрируется счетчиком, совмещенным с гониометром. Такая схема прибора основана на принципе рентгеновской дифрактометрии. Этот метод отличается от рентгеновской спектроскопии только тем, что в нем задаются длиной волны регистрируемого излучения, а строение кристалл-анализатора остается неизвестным. В рентгеновской же спектроскопии имеет место обратное. [c.204]


    Строго говоря, последний следует отнести к другой группе — группе методов электронной и ионной спектроскопии, так как общим с методом РСА здесь является лишь то, что источником возбуждения Оже-спектров чаще всего служит рентгеновская трубка. [c.4]

    С 1946 г. стали производиться рентгеновские трубки с большим выходом энергии и высокочувствительные детекторы, и метод рентгеновской спектроскопии стал приобретать определенное значение, особенно при анализе металлов. С его помощью можно анализировать и геохимические образцы в виде порошка, раствора или плава. В разных странах, особенно в США, ведется большая работа по накоплению стандартных проб и разработке методов анализа. [c.217]

    Рентгеновская спектроскопия, рентгеноспектральный анализ, рентгеновская эмиссионная спектроскопия, рентгеноспектральный локальный анализ, рентгеновский электронно-зондовый анализ — сфокусированный пучок электронов (электронный зонд) возбуждает рентгеновское излучение в микрообъеме анализируемого образца (шлиф), который служит анодом разъемной рентгеновской трубки. Излучение разлагают в спектр интенсивность соответствующих линий зависит от концентрации элемента в данном микрообъеме. Локальность составляет 0,1—0,3 мкм , локальный предел обнаружения —10 г. Интенсивность линий определяемого элемента А сравнивают фотографическим способом с интенсивностью / ближайшей линии стандартного элемента. Последний заранее вводят в пробу в известном весовом количестве (метод внутреннего стандарта). Отношение интенсивностей аналитических линий пропорционально отношению массовых количеств определяемого (Сд) и стандартного (с ) веществ  [c.15]

    Используемые в рентгеновской спектроскопии трубки характеризуются высокой потребляемой мощностью (3,5 кВт). Ввиду этого предпочитают трубки с вольфрамовым анодом. Излучение флуоресценции особенно велико в том случае, когда собственное излучение рентгеновской трубки имеет длину волны, близкую к краю поглощения определяемого элемента (например, использование анода из хрома при определении К, Са, Т1). [c.204]

    Перед тем как остановится на методах с применением рентгеновской дифракции и спектроскопии, необходимо дать характеристику источников рентгеновского излучения. Распространенным способом получения рентгеновского излучения являются всем известные рентгеновские трубки, которые обеспечивают рентгеновское излучение в диапазоне энергий 10 -Ь Ю эВ с наиболее распространенными анодами из алюминия или магния. Однако рентгеновские трубки не обеспечивают изменение энергии в широком диапазоне, необходимом для исследования неупругих процессов. Интенсивность таких источников также крайне недостаточна. Значительный прогресс в этой области стал возможным с широким развитием и применением синхротронных источников, краткое описание которых совершенно необходимо при рассмотрении различных рентгеновских методов. [c.62]

    Рентгеновская спектроскопия. Рентгеновское излучение имеет ту же электромагнитную природу, что и световое излучение, у-излучение и радиоволны. Рентгеновские спектры получают при бомбардировке вещества, находящегося непосредственно на аноде рентгеновской трубки, электронами высокой энергии, испускаемыми катодом (рис. 80). Получаемый ренгеновский спектр называется первичным. Вторичный рентгеновский спектр получается при облу- [c.181]

    Экспериментальное осуществление-ФЭ- и РЭ-спектроскопии довольно несложно. На рис. 86 показана схема установки для РЭ-сиектроскоиии (РЭ-сиектрометр). Рентгеновские кванты Нл- из анода рентгеновской трубки 1 попадают на исследуемый образец 2, выбивая электроны от атомов, входящих в состав образца. Разложение электронов в спектр и фокусировка их по энергиям кин производится с помощью магнитного или электростатического поля сферического конденсатора 3. При некоторой напряженности поля электроны, имеющие определенную кинетическую энергию, отклоняются по дуге и попадают в счетчик. Последний сортирует испускаемые веществом электроны по их кинетическим энергиям Енин- Таким образом, зная энергию источника облучения (монохроматическое рентгеновское излучение с энергией Ьу) и экспериментально определяя кин, легко найти Есв по (VI. 13). В ФЭ-спектрометре вместо источника рентгеновских квантов (рентгеновская трубка) применяется источник монохроматического ультрафиолетового излучения. [c.184]

    Диапазон энергий квантов С.и.-от долей эВ до сотен кэВ (т. е. включает область мягкого рентгеновского излучения). С. и. характеризуется непрерывным спектром, высокой степенью поляризации, большой интенсивностью (превосходит на неск. порядков излучение в рентгеновских трубках), чрезвычайно малой расходимостью, малой длительностью импульсов (до 100 пс). Эти св-ва позволяют использовать С. и. в спектроскопии, рентгеновском структурном анализе, для изучения оптич. активности молекул, возбуждения люминесценции, инициирования фотохим. р-ций и др. Так, благодаря большой интенсивности источников С. и. удалось зарегистрировать мол. спектры поглощения с разрешением 0,003 нм. Разрабатываются импульсные методы спектроскопии, использующие С. и. для исследования метастабильных продуктов фотолиза, механизма сверхбыстрых р-ций и т. п. Рентгеновский структурный анализ биол. объектов, в частности монокристаллов белков, использующий С. и., позволяет значительно сократить время регистрации рентгенограмм, уменьшить радиац. нагрузки на образец. С. и. применяют также, напр., для фотолитографии, в произ-ве интегральных схем. [c.357]


    Рентгеновская фотоэлектронная или рентгеноэлектронная спектроскопия основана на измерении кинетической энергии фотоэлектронов, испускаемых веществом под действием квантов рентгеновского излучения с известной энергией. Уравнение Эйнштейна для фотоэффекта позволяет определить энергию ионизации или энергию связи электронов в=/tv—Екаа. В качестве источников рентгеновского излучения (рис. 23.8), используют обычные рентгеновские трубки с анодами из Си, Сг, А1, Mg, которые дают -излучение с энергией 8048, 5415, 1487, 1254 эВ. Для улучшения разрешающей способности спектрометра существенна монохроматизация рентгеновских лучей (с помощью фильтров или кристалл-монохроматоров). [c.578]

    Окно рентгеновской трубки также поглощает первичное излучение. При длинах волн менее 3 А поглощение не очень значительно, но при 4,5 А только 1% первичного потока пропускается берилли-евым окном толщиной 0,076 см и способность к пропусканию надает до 0,1% для 5,18 А и до 0,01% для 5,7 А. Частично решить эту проблему может в некоторых случаях применение более тонкого окна, но так как легкие элементы представляют большой интерес, то это явление составляет причину одного из основных ограничений в применении флуоресцентной рентгеновской спектроскопии. [c.224]

    Решение проблемы определения ниобия и тантала в некоторых рудах является удачным сочетанием химического и рентгеновского методов. Химическое выделение из руд смеси окислов этой пары металлов — простая задача, но определение отношения ниобий/тантал мокрым методом в такой смеси чрезвычайно затруднительно и отнимает много времени. Весьма серьезным препятствием к определению этого отношения методом рентгеновской эмиссионной спектроскопии было недостаточное разрешение пригодных для работы линий второго порядка Nb/ a и первого порядка TaLau Последняя является самой удобной линией для определения тантала [186]. Трубка с вольфрамовым анодом дает рассеянные линии характеристического спектра вольфрама, которые накладываются на фон и усложняют спектр [235]. Работа трубки при напряжении 18 кв исключает возбуждения Nb К-серии (потенциал возбуждения 18,968 кв), но пр,и этом низка интенсивность аналитической линии тантала. Несмотря на эти трудности, удовлетворительные методы определения отношения [c.214]

    Очень удачным для развития рентгеновской спектроскопии явилось то, что мощные рентгеновские трубки с тонкими бериллиевыми окнами были созданы как раз тогда, когда появились совершенные детекторы, что сделало описываемый метод более привлекательным. В разработке таких трубок ведущую роль играли лаборатории фирмы Ma hlett [258]. Эти трубки создавали преимущественно для таких случаев применения, как поверхностная терапия и радиография. Трубки могли работать при пиковом напряжении 50 кв и токе 50 ма, создавая мощный рентгеновский пучок достаточно мягкого излучения. Последнее крайне важно для поверхностной терапии, так как излучаемые трубкой длины волн целиком поглощаются в пощиожяых слоях. Мягкость излучения существенна и в спектроскопии при возбуждении спектров наиболее легких элементов. Кроме того, фирма попыталась разработать трубки (AEG-50-S, OEG-50-S), дающие спектры, почти не содержащие посторонних излучений (рис. 41). Ниже приводится фирменное описание трубки AEG-50 [259], показанной на рис. 93. [c.260]

    Последние успехи рентгеновской спектроскопии обусловлены имеющимися в продаже высокоэффективными отпаянными рентгеновскими трубками и усовершенствованием методов обнаружения и измерения рентгеновского излучения. Особое значение имело развитие надежных и долгоживущих газовых детекторов излучения тина гейгеровских пропорциональных и сцинтилляционных счетчиков. Эти детекторы в сочетании со стабильными электронными схемами позволили применять рентгеноспектральные методы для решения широкого круга проблем. Ряд рентгеноснектральных инструментальных методов пригоден и для определения следов элементов. [c.210]

    Ну, во-первых, точные данные о природе атомов, расположенных на поверхности твердого тела (еще одно ходовое название метода — ЭСХА, электронная спектроскопия для химического анализа). Каждому элементу свойственны свои, не перекрывающиеся с соседями по таблице Менделеева линии /<- и -электронов. Рентгеновское излучение проникает в твердый образец неглубоко — не более, чем на 10 нм. Чувствительность же метода весьма высока. Используя рентгеновские трубки с алюминиевыми (энергия квантов линии А1Ка составляет 1486 эВ) или магниевыми (для линии MgK t /iv=1254 эВ) катодами, можно количественно определить, какие элементы находятся на поверхности объекта при общем их содержании, измеряемом миллионными, даже миллиардными долями грамма. После этого, если нужно, делается травление поверхности ионными пучками, способными за несколько минут снять слой толщиной несколько нм, и повторное измерение. Так удается проследить за особенностями строения тончайших поверхностных слоев материала. [c.206]

    Однослойные углеродные ианотрубки средним диаметром 1.2-1.4 нм были исследованы после обработки высоким давлением 9.5-15 ГПа и температурой до 1500°С. Были использованы спектроскопия КРС, рентгеновская дифракция, электронная микроскопия высокого разрешения. Также были измерены плотность образцов и их твердость. Рентгеновские дифракционные картины обработанньге давлением образцов, также как и исходного материала, не содержат отчетливых пиков, поскольку трубки не были упорядочены. В то же время, отсутствие характерного для аморфного углерода пика в области межплоскостных расстояний [c.62]

    Принципиальная схема обычной установки для. рентгеновской спектроскопии (метод Брэггов) изображена на рис. 28. Щель выделяет узкий пучок КЗ лучей, испускаемых актякагодсм рентгоаовской трубки. Этот пучок отра- [c.107]

    Трубка AEG-50 имеет бериллиевое окно и заземленный анод. Она предназначена для получения рентгеновского пучка высокой интенсивности в области длинных волн. Такое излучение находит множество применений в медицине, науке и в промышленности. Трубку щироко применяют в терапии, при стерилизации и в генетических исследованиях. Она может быть применена также в микрорадиографии, гисторадиографии, радиографии небольших животных и объектов искусства. В индустриальной области эта трубка нашла применение для непрерывного контроля толщины прокатываемых листов, испытания сварных швов и изделий из тонких листов легких металлов, а также для химических анализов методами рентгеновской спектроскопии. [c.260]


Смотреть страницы где упоминается термин Рентгеновские трубки спектроскопии: [c.371]    [c.241]    [c.245]    [c.371]    [c.18]    [c.19]    [c.283]    [c.528]    [c.156]    [c.156]   
Применение поглощения и испускания рентгеновских лучей (1964) -- [ c.260 , c.262 , c.266 ]




ПОИСК





Смотрите так же термины и статьи:

Рентгеновская трубка

Спектроскопия рентгеновская



© 2025 chem21.info Реклама на сайте