Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновский метод химического анализа

    Предлагаемое практическое руководство обобщает опыт преподавания физических и физико-химических методов анализа, накопленный на кафедре аналитической химии Московского государственного университета. Руководство включает два больших раздела— спектроскопические и электрохимические методы. В спектроскопические методы включены методы эмиссионной фотометрии пламени, атомно-абсорбционной спектроскопии пламени, абсорбционной молекулярной спектроскопии и люминесцентный в электрохимические — потенциометрический (в том числе с использованием ионоселективных электродов), кулонометрический, полярографический и амперометрический методы. Наряду с перечисленными методами в современных аналитических ла- бораториях используют и другие методы атомно-флуоресцентный анализ, рентгеновские методы, искровую и лазерную масс-спектрометрию, радиоспектроскопические, ядерно-физические и радиохимические методы, однако ограниченное число учебных часов не позволяет включить их в данное руководство. Изучение этих курсов предусмотрено [c.3]


    Другим современным методом, служащим для построения диаграмм состояния, является метод рентгеноструктурного анализа. Рентгеноструктурный анализ является одним из наиболее совершенных методов изучения всех превращений, сопровождающихся изменением кристаллической решетки. Поэтому он особенно полезен при исследовании полиморфных превращений, образования и распада твердых растворов, а также образования химических соединений. Методами рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения. Рентгеноструктурный анализ применяется для качественного и количественного фазового анализа гетерогенных систем, для исследования изменений в твердых растворах, определения типа твердого раствора и границ растворимости. Рентгеноструктурный анализ является дифракционным структурным методом он основан на взаимодействии рентгеновского излучения с электронами вещества, в результате которого возникает дифракция рентгеновского излучения. Основную информацию в рентгеноструктурном анализе получают из рентгенограмм. Типы рентгенограмм сильно зависят от природы и состава фаз. Между типом рентгенограммы и типом диаграммы состояния существует определенная связь. Особенно полезны рентгенографические данные для построения той части диаграмм, которые описывают равновесные процессы в твердом состоянии, где процессы установления равновесных состояний протекают очень медленно. [c.235]

    Рентгеновский метод химического анализа 18  [c.181]

    РЕНТГЕНОВСКИЙ МЕТОД ХИМИЧЕСКОГО АНАЛИЗА [c.181]

    В данной лекции проведен сравнительный анализ ряда физико-химических методов, применяемых для исследования структуры твердых катализаторов. Показано, что оптимальный набор методов определяется но основе анализа свойств, которые должны быть охарактеризованы для изучаемой системы. Для твердых катализаторов этот набор включает методы химического анализа, адсорбцию газов при низкой температуре, просвечивающую электронную микроскопию, селективную адсорбцию газов, рентгеновскую фотоэлектронную спектроскопию, рентгеновскую дифракцию. Обсуждаются физические принципы действия этих методов и тип получаемой информации. На примере исследования ряда монолитных катализаторов очистки выхлопных газов автомобильных двигателей продемонстрированы методические особенности практического применения выбранных методов. [c.9]


    Описание практики рентгеновской спектроскопии и список большинства линий имеются в статье A.B. Ф р о с т а, Современные физико-химические методы химического анализа (ред. С. Н. Щ у к а р е в а), т. 1, 1932. [c.109]

    РЕНТГЕНОСПЕКТРАЛЬНЫЙ АНАЛИЗ — метод аналитической химии, в котором для определения состава вещества используют рентгеновские спектры химических элементов. Р. а. может быть использован для количественного определения элементов от l Mg до в материалах различного состава. Чаще всего Р. а. применяют в металлургии и геологии. [c.214]

    Продукты коррозии, образовавшиеся на литейной N1—Мп бронзе в течение 403 сут экспозиции на глубине 1830 м, исследовались при помощи дифракции рентгеновских лучей методами спектрографии, инфракрасной спектрофотометрии и количественного химического анализа. Продукты коррозии состояли из хлористой меди СиСЬ-НаО, оксихлорида меди [Си2(ОН)зС1], металлической меди 35,98%, небольших количеств алюминия, железа, кремния и натрия хлор-ионов в виде С1 —0,91 %  [c.275]

    Наиболее полное представление о продуктах физико-химических реакций, происходящих при нагревании стекольных шихт, дает комплексный метод исследования, включающий изотермический и динамический способы нагревания, а также термический микроскопический, рентгеновский и химический анализы. [c.68]

    Для фазового анализа применяется ряд физических и химических методов. Наиболее обычным физическим методом фазового анализа металлов и силикатов является микроскопическое исследование. В микроскопическом исследовании металлов обычно предварительно травят полированную поверхность металла тем или другим химическим реактивом для более четкого выделения поверхности раздела отдельных фаз. В результате выявляется определенная структура металла, которую наблюдают под микроскопом. При исследовании различных горных пород применяют, кроме того, разделение измельченной породы на фракции по удельному весу, отделение магнитных минералов (а также частиц металлического железа, внесенного при бурении скважины) посредством магнита (магнитная сепарация) и т. д. В некоторых случаях для целей фазового анализа изучают изменение свойств материалов при нагревании (термографический анализ), применяют рентгеновские и другие методы исследования. [c.14]

    Для расшифровки термограмм и подтверждения данных ДТА применяют комплекс методов физико-химического анализа микроскопический, рентгеновский, химический, дилатометрический, термогравиметрический и др. [c.24]

    При фиксированной частоте v испущенные электроны имеют различные кинетические энергии. Откладывая число электронов, испущенных за данный промежуток времени, в зависимости от Т (или более непосредственно от I — hv—Тk) получим спектр испущенных электронов. При использовании гелия и других подобных источников электромагнитного излучения этот метод носит название ультрафиолетовой фотоэлектронной спектроскопии (УФС), в случае рентгеновских источников его называют рентгеновской фотоэлектронной спектроскопией (РФС) или ЭСХА электронная спектроскопия для химического анализа. [c.81]

    Помимо целей химического анализа, применение метода сыграло большую роль в исследовании самых различных свойств вещества. Так, благодаря рентгеновской спектроскопии получены сведения о поведении и свойствах электронов в твердых телах. Именно анализ рентгеновских спектров, обусловленных электронными переходами с глубинных дискретных уровнен атомов на более удаленные орбиты, является наиболее прямым способом для изучения распределения энергетических уровней в валентной и проводящих зонах, дает возможность найти распределение между занятыми и свободными электронными уровнями в твердых телах. При изменении физического или химического состояний вещества наблюдаются небольшие смещения линий в спектрах отдельных элементов, которые позволяют судить о характере и изменении роли электронных орбиталей этих элементов при переходе в химически связанное состояние. Следует отметить, что возможности этого метода для исследования физико-химических свойств твердых тел далеко не исчерпаны и в настоящее время работа в этом направлении продолжается. [c.126]

    Изучение природы сплавов и их свойств выделено в особую отрасль — металлографию, которая пользуется тремя важнейшими методами исследования физико-химическим анализом, микроскопическим изучением травленных полированных поверхностей (металлография) и рентгеновскими анализами. В настоящей главе будет рассмотрен метод физико-химического анализа, позволяющий наиболее полно вскрыть состояние отдельных компонентов в сплаве и природу последнего. [c.220]


    Частично из-за потребности в монохроматическом излучении возникли два раздела фотоэлектронной спектроскопии. Рентгеновская фотоэлектронная спектроскопия, сокращенно обозначаемая как РФС или ЭСХА (электронная спектроскопия для химического анализа), использующая рентгеновские лучи в качестве источника ионизирующего излучения, изучает в основном электроны оболочки (т.е. невалентные электроны). Создание этого метода приписывают Сигбану и сотр. [27]. В ультрафиолетовой фотоэлектронной спектроскопии (УФС) используют ультрафиолетовое излучение, имеющее более низкую энергию, и, таким образом, исследуют энергии связи валентных электронов. Обязанная своим развитием главным образом Тернеру и его сотрудникам [28], УФС предназначалась не только для измерения энергий связывания валентных электронов, но и для наблюдения за возбужденными колебательными состояниями молекулярного иона, образующегося в процессе фотоионизации. [c.331]

    Заводская лаборатория — ежемесячный журнал ГНТК СМ СССР, издается с 1932 г. В журнале публикуются работы по новым методам химического анализа руд, металлов, огнеупоров, углей, газов, неорганических и органических химических продуктов, воды, масел и др, В журнале освещаются современные физические методы лабораторного контроля в промышленности спектральные, магнитные, рентгеновские и др., а также новые методы механических испытаний металлов. Описываются конструкции новых приборов и аппаратов для испытания различных материалов. [c.493]

    Как интенсивный альфа-излучатель кюрий-242 может применяться в нейтронных источниках (в смеси с бериллием), а также для создания внешних нучков альфа-частиц. Последние используют как средство возбуждения атомов в новых методах химического анализа, основанных на рассеянии альфа-частиц и возбуждении характеристического рентгеновского излучения. Такая установка была, в частности, иа борту космической станции Сервейор-У . С ее помощью был проведен непосредственный химический анализ поверхности Луны методом рассеяния альфа-частиц. [c.420]

    На основании характеристического рентгеновского спектра удается сравнительно легко и надежно идентифицировать вещество и в таких случаях, когда вследствие слишком больших трудностей, связанных с его получением в чистом виде, методы химического анализа не дают результата, а оптические спектры слишком сложны. На этом основан рентгеноспектралъный анализ, к обсуждению которого теперь следует перейти. В дальнейшем изложении, в последнем разделе, еще будет рассмотрен закон Мозли, сыгравший столь важную роль в развитии периодической системы и вскрывший сущность зависимости между атомными весами и порядковыми номерами. Однако прежде необходимо предварительно ознакомиться с теми выводами относительно строения атомов, к которым приводит изучение рентгеновских спектров и которые являются основанием для правильного понимания соотношений между атомным весом И порядковым номером. [c.255]

    Дозиметр Фрике применяют при измерении рентгеновского и у Излучений в интервале энергий 0,1—2 Мэв при мощности дозы до 3- 10 эрг1 г-ч) и полной дозе до 4-10 эрг кг. В этом дозиметре под действием излучения в воде образуются продукты, окисляющие двухвалентное железо до трехвалентного. Степень окисления не зависит от концентрации и пропорциональна полной дозе до указанного выше предела в интервале температур О—50° С. Степень окисления может быть определена стандартными методами химического анализа титрованием остаточного количества двухвалентного железа или колориметрическим определением трехвалентпого железа. [c.54]

    Завершая данный обзор, хотелось бы надеяться, что удалось показать, каким образом физико-химические методы исследования могут быть эффективно использованы для изучения строения гетерогенных катализаторов. Использованные нами для изучения монолитных катализаторов очистки выхлопных газов автомобильных двигателей методы (химического анализа, рентгеновской дифракции, просвечивающей электронной микросокпии, адсорбционных методов, рентгеновской фотоэлектронной спектроскопии) представляют собой минимальный набор, с помощью которого могут быть установлены такие важные свойства твердых гетерогенных катализаторов, как химический и фазовый состав, текстурные характеристики (величина удельной поверхности, общий объем пор и распределение пор по размерам), а также химический состав поверхности. Очевидно, что в каждом конкретном случае следует оценивать необходимость привлечения других физико-химических методов, может быть не столь универсальных, но позволяющих получать дополнительную информацию о том, или ином свойстве изучаемого катализатора (например методы магнитного резонанса — ЯМР и ЭПР). [c.38]

    Автоматизация приготовления сырьевой смеси возможна при наличии быстрых методов химического анализа. В цементной промышленности успешно применяется метод, основанный на применении фотоколориметров. В настоящее время Гипроцемент разрабатывает аппаратуру для автоматизации операций химического анализа на основе применения фотоколориметров. Хорошие результаты дает применение рентгеновского спектрографа, позволяющего через 20 мин определить состав смеси по четырем компонентам (СаО, SiO , AlgOg, Fe Og). Разрабатываются и созданы также системы для автоматического определения в потоке шлама титра — автоматические титрометры. [c.250]

    Здесь имеются в виду методы, которые основываются на явлениях фотоэффекта, получаемого при использовании монохроматического электромагнитного излучения, и вторичной электронной эмиссии. Собственно фотоэлектронной спектроскопией (ФЭС) называют метод, в котором вещество облучают в вакуумной УФ области электромагнитного спектра. Приоритет открытия явления эмиссии фотоэлектронов в газах под действием УФ облучения, положившего начало развитию метода ФЭС, принадлежит Ф. И. Вилесову (СССР). В рентгеноэлектронной спектроскопии (РЭС, или ЭСХА, что означает электронная спектроскопия для химического анализа) используют монохроматическое рентгеновское излучение. Создателем этого метода применительно к изучению поверхности твердых тел является шведский ученый К. Зигбан. Для возбуждения эмисии электропов может использоваться также электронный пучок, тогда говорят о методе индуцированной электронной эмиссии спектроскопии .  [c.134]

    Все перхлораты окрашиваются после облучения, и окраска, по-вндимому, связана с накоплением IO2. Основные продукты радиолиза СЮ, и СЬ удалось идентифицировать в сухих порошках с помощью инфракрасных и рентгеновских спектров. lOg , СЮ и СЮг были идентифицированы с помощью обычных методов химического анализа в растворе. Значения G для радиолиза перхлоратов приведены в табл. 10.5. [c.321]

    Изучение химии невозможно без лабораторного практикума, в процессе которого происходиг закрепление теоретических знаний. Работа на Спеасгроскане позволяет обучить студентов проведению химического анализа состава вещества на портативном рентгеновском спектрометре с учетом современных требований, предъявляемых к физико-химическим методам точность, экспрессностъ, массовость, автоматизация и т. д. [c.56]

    Русское издание справочника состоит из четырех томов, разделенных на 0 выпусков. В первом выпуске первого тома содержатся сведения по организации и п[юек-тированию лабораторий, по отбору проб и организации работы. Далее описаны ос швы качественного анализа иеоргаиических и органически.х соединений, а также методы количественного анализа объемный анализ, электроанализ, потенциометрия и конду1Сто-метрия. Во втором выпуске первого тома описаны физические методы исследований измерение температуры, давления, удельного веса и др., оптические измерения (1 оло-риметрия, спектральный анализ, поляриметрия, рентгеновский анализ), а также методы TexHH4f K0r0 анализа газов, микрохимического и коллоидно-химического анализа. Первый выпуск первой части второго тома содержит описание методов анг.лиза топлива, воды и воздуха. [c.485]

    В последние десятилетия наблюдалось бурное развитие рентгеноструктурного анализа (в первую очередь с использованием монокристаллов), а также других дифракционных методов исследования. Это обусловлено рядом причин. Одной из них явилось кардинальное усовершенствование рентгеновской аппаратуры, включая разработку ряда типов дифрактометров, управляемых ЭВМ, для съемки монокристаллов, внедрение новых способов регистрации рентгеновского излучения, использование монохроматоров. В результате точность экспериментальных данных резко возросла и появилась возможность решения принципиально новых задач (локализация легких атомов, определение деталей распределения электронной плотности на базе совместных данных нейтронографического и рентгеновского методов). Не менее важным обстоятельством явилась разработка комплексов программ обработки результатов измерений и определения структуры кристаллов, зачастую с недостаточно охарактеризованным химическим составом. Этой области применения рентгеноструктурного ана 1иза в химии посвящено несколько прекрасных монографий и учебников, и структурные разделы почти обязательно включаются в работы по синтезу новых соединений, так как дают непосредственные данные о пространственном расположении атомов в кристаллах а иногда являются и удобным способом определения химического состава, в особенности если известен качественный состав. [c.3]

    Источником монохроматического излучения обычно служит разряд в атмосфере гелия при низком давлении с йу = 21,22 эВ [линия Я. = 58,4 нм (584А)]. Кванты данной энергии выбивают электроны не только с ВЗАО, но и других, не очень глубоко лежащих АО, что позволяет измерять ПЙ с разных атомных орбиталей. Для определения ПИ с более глубоких АО используется особая ламти с разрядом в гелии с йу = 40,7 эВ [линия Х= 30,4 нм (304А)]. Для этих же целей используется и рентгеновское монохроматическое излучение (РЭС). В спектре каждому орбитальному ПИ отвечает свой пик. При ионизации с вырожденных АО интенсивность выше, так как вероятность ионизации возрастает (например, для атома азота она втрое выше с р-АО, чем с 5-АО). ФЭС и РЭС используются и для исследования молекул, где наряду с орбитальной энергией они дают сведения о колебательных состояниях молекул, их структуре и т. н. [к-7] и [к-39]. Метод ФЭС" (РЭр является мощным средством для изучения электронной структуры вещества — атомов, молекул, твердых тел. Особое значение он приобрел для исследования химической связи и для элементного химического анализа —электронная спектроскопия для химического анализа (ЭСХА) [к-41]. [c.59]

    Причины такого парадоксального положения аналитической химии лежат как раз в ее необычайно быстром и широком развитии за последние двадцать лет, основанном на достижениях физики, физической хиц и техники. Для целей химического анализа ныне все больше используются не только процессы, обусловленные изменениями во внешних электронных слоях атомов и молекул (химические и электрохимические реакции и электронная спектроскопия), но и взаимодействия и процессы на внутренних электронных и ядерных уровнях атомов (рентгеновские, масс-спектроскопические, активационные и др. методы). Кроме того, получили развитие и методы, основанные на статистических свойствах вещества в массе (например, диэлкометрия). А так как интеграция в аналитической химии пока отстает, то возник вопрос, является ли все это вообще отраслью химии И представляет ли собой дельную науку  [c.5]

    Дифракционные методы. В дифракционных методах исследования рентгеновское излучение, поток электронов или нейтронов взаимодействуют с атомами в молекулах, жидкостях или кристаллах. При этом исследуемое вешество играет роль дифракционной решетки. А длина волны рентгеновских квантов, электронов и нейтронов должна быть соизмерима с межатомными расстояниями в молекулах или между частицами в жидкостях и твердых телах. Сама же дифракция (закономерное чередование максимумов и минимумов) представляет собой результат интерференции волн. Она зависит от химического и кристаллохимического строения, следовательно, соответствует структуре исследуемого вещества. Поэтому есть принципиальная возможность для решения обратной задачи дифракции, т. е. установление структуры вещества по его дифракционной картине. Обратная задача дифракции для рентгеновского излучения, дифрагирующего в конденсированных средах, называется рентгеноструктурным анализом. Методы применения электронных и нейтронных пучков вместо рентгеновского излучения называются электронографией и нейтронографией соответственно. Общим для этих методов является анализ углового распределения интенсивности рассеянного рентгеновского излучения, нейтронов и электронов в результате взаимодействия с веществом. Но природа рассеяния рентгеновских квантов, нейтронов и электронов не одинакова. Рентгеновское излучение рассеивается электронами атомов, входящими в состав вещества. Нейтроны же рассеиваются атомными ядрами а электроны — электрическим полем ядер и электронных оболочек атомов. Интенсивность рассеяния электронов пропорциональна электростатическому потенциалу атомов. [c.195]

    Оптическими называют те методы физико-химического анализа, в основе которых лежит явление испускания или поглощения инфракрасных, видимых, ультрафиолетовых, рентгеновских лучей анализируемыми веществами или продуктами их реакций. Сюда относятся колориметрия, нефелометрия, флуорометрия, спектрофотометрия, по-ляриметрия, рефрактометрия и др. [c.6]

    Продукты коррозии некоторых сталей исследовали методами дифракции рентгеновских лучей, спектрографического анализа, количественного химического анализа и инфракрасной спектрофотометрии. В продуктах коррозии были найдены РеаОз Ре(ОН)з FeOOH и FeaOa-HjO, а также значительные количества хлор-, сульфат- и фосфат-ионов. [c.248]

    Продукты коррозии, взятые из одного коррозионного туннеля в нержавеющей стали A1S1 430, анализировались прн помощи дифракции рентгеновских лучей, методами спектрографического анализа, количественного химического анализа и инфракрасной спектрофотометрии. В продуктах коррозии обнаружили аморфный оксид железа РегОз-ХНаО, Fe, Сг, Мп, Si, следы Ni, 1,41J% хлор-ионов, 2,12% сульфат-ионов и значительное количество фосфат-ионов. [c.335]

    Продукты коррозии сплава 7079-Тб исследовались при помощи дифракции рентгеновских лучей, спектрографическим анализом, количественным химическим анализом и методом инфракрасной спектрофотометрии. Качественные результаты по составу продуктов коррозии таковы аморфные соединения А Оз-ХНгО, Na l, Al металлический, Al, u, Mg, Мп, Zn, Na, a, следы Ti и Ni, 2,82 % хлор-ионов, 16,7 % сульфат-ионов и значительное количество фосфат-ионов. [c.391]

    Для построения Д. с. расчетным путем необходимо знать зависимости хим. потенциалов всех компонентов системы от 7] р и состава фаз. Приближенные методы расчета с применением ЭВМ интенсивно развиваются, в частности, для многокомпонентных сплавов. Однако пока Д. с. строят на основе эксперим. данных, получаемых гл. обр. термическим анализом, к-рый позволяет определять зависимости т-р плавления или кристаллизации от состава, а также изучением равновесий жидкость-пар и жидкость - жидкость, Широко используют рентгеновский фазовый анализ, данные о микроструктуре затвердевших расплавов, измерения физ. св-в фаз (см. Диаграмма состав - свойство). Изучение Д. с. составляет осн. содержание физико-химического анализа. [c.33]

    Выяснение механизма образования Т. р. требует применения физ. методов исследования, в частности рентгеновского структурного анализа. К числу наиб, часто применяемых методов исследования Т. р. относится рентгенография порошков. Параметры кристаллич. решетки Т. р. линейно зависят от состава (Л. Вегард, 1921) реально наблюдаются отклонения от этого правила. Широко используют также измерения плотности согласно правилу Ретгерса (1889), плотность, а также молярный объем аддитивно зависят от концентрации. Измерение т-р фазовых переходов (см. Термография) позволяет строить диаграммы р-римости с их последующим физико-химическим анализом. [c.507]

    Химический анализ в растровом электронном микроскопе и peнтгeнoв кOiM микроанализаторе осуществляется иутем измерения энергии и интенсивности рентгеновского излучения, генерируемого ири бомбардировке образца сфокусированным электронным пучком. Вопросы генерирования рентгеновского излучения обсуждались в гл. 3, посвященной взаимодействию электронного иучка с образцом, где рассматривались механизмы образования характеристического и непрерывного рентгеновского излучения. В данной главе обсуждаются методы регистрации и измерения рентгеновского излучения, а также преобразования их в форму, пригодную для проведения качественного и количественного анализа. [c.190]

    Кроме. химического анализа в выбранной точке часто желательно проанализировать распределение интенсивностей рентгеновских линий одного или более элементов вдоль линии на образце или даже по двумерному полю зрения. В режиме линейного сканирования сигнал с интенсиметра, соответствующий определенной установке спектрометра, подается на пластины вертикального отклонения электронно-лучевой трубки при сканировании электронного пучка по образцу (рис. 5.14). Для облегчения интерпретации производят наложение распределения рентгеновской интенсивности на вторично-эмиссионное изображение. Полученные таким способом результаты дают полуколи-чественную информацию о химическом составе образца. Для получения полной количественной информации требуется преобразовать интенсивности линий различных элементов в их концентрации с помощью одного из математических методов, описанных в гл. 7. Более того, поскольку отклонение электронного луча может приводить к расфокусировке спектрометра, количественные данные о распределении элементов вдоль линии лучше получать пошаговым перемещением образца при непод-вижчом электронном пучке. [c.208]

    Предыдущий пункт приводит прямо к обсуждению минимально возможного размера зонда для рентгеновского анализа. Для каждого типа источника и напряжения, как детально показано в гл. 2 (рис. 2.16), для любого заданного размера зонда существует максимальное значение тока. Для обычных источников из вольфрама ток зонда изменяется пропорционально диаметру луча в степени 8/3 И имеет при 20 кВ типичные значения Ю А для зонда диаметром 20 нм (200 А), 10 А — для 100 нм (1000 А) и 10 А —для 1000 нм (10000 А). В спектрометре с дисперсией по энергии три помощи детектора диаметром 4 мм, находящегося на расстоянии 1 см от образца из чистого никеля, можно получить скорость счета около 10 имп./с для угла выхода 35° при диаметре зонда 20 нм (10 А) и 100%-ной квантовой эффективности. Как следует из рис. 5.33, скорость счета 10 имп./с является слишком высокой для реализации максимального энергетического разрешения, так что оператор должен либо отодвинуть детектор, уменьшить постоянную времени спектрометра с дисперсией по энергии, либо уменьшить ток зонда, перейдя к пятну меньшего размера. С другой стороны, соответствующая скорость счета для спектрометра с дисперсией по длинам волн составляла бы около 100 имп./с, что слишком мало для практического использования. Для массивных образцов (толщиной более нескольких микрометров) пространственное разрешение при химическом анализе не улучшается при использовании зондов с диаметром значительно меньше 1 mikm, поскольку объем области генерации рентгеновского излучения определяется рассеянием и глубиной проникновения электронов луча, а не размером зонда. Это демонстрируется на рис. 5.54, где показана серия расчетов рассеяния электронов и распределения генерации рентгеновского излучения, выполненных по методу Монте-Карло для зонда диаметром 0,2 мкм и гипотетического включения ТаС размером 1 мкм в матрицу пз Ni — Сг. Легко видеть, что траектории электронов и, следовательно, область генерации рентгеновского излучения, особенно при высоком напряжении, заметно превышают 1 мкм или 5- кратный диаметр зонда. Предельное значение диаметра зонда при исследовании таких образцов ниже нескольких сотен нанометров, поэтому полный анализ можно выполнить при форсированпи тока зонда до 10 нА и использова- [c.262]


Смотреть страницы где упоминается термин Рентгеновский метод химического анализа: [c.423]    [c.11]    [c.2]    [c.299]    [c.111]    [c.103]    [c.30]    [c.90]   
Смотреть главы в:

Практическое руководство по неорганическому анализу -> Рентгеновский метод химического анализа

Практическое руководство по неорганическому анализу -> Рентгеновский метод химического анализа




ПОИСК





Смотрите так же термины и статьи:

Анализ химический

Методы анализа химические



© 2025 chem21.info Реклама на сайте