Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры переработка в изделия

    Между тем, в республике организация переработки полимеров в изделия находится на уровне мелких производств полукустарного типа, разбросанных по предприятиям различных ведомств. Необходима организация переработки полимерных материалов в изделия, как путем создания новых производственных мощностей, так и более полной и рациональной загрузки и концентрации имеющегося, разбросанного по разным производственным объектам оборудования. [c.378]


    При всякой переработке кристаллического полимера возможны глубокие изменения его надмолекулярной структуры и, как следствие, механических и защитных свойств. Поэтому переработка полимера в изделие требует выбора оптимальных температурно-временных режимов переработки. [c.121]

    Температурные интервалы фазовых и физических состояний определяют комплекс механических свойств и соответственно области практического применения полимера. Так, полимеры, находящиеся при комнатной температуре в кристаллическом (фазовом) или аморфные полимеры в стеклообразном (физическом) состоянии могут быть использованы в качестве пластиков или волокнообразующих материалов. Аморфные полимеры, находящиеся при комнатной температуре в высокоэластическом физическом состоянии, могут применяться в качестве каучуков для получения резиновых изделий. В вязкотекучем состоянии обычно осуществляют переработку (формование) полимеров в изделия. [c.143]

    Материал учебника соответствует программам курса химии и физики полимеров для специальностей технологии переработки полимеров (пластмассы, каучуки и резины, волокна, лаки, покрытия, пленки) и получения изделий из них. Эти специальности относятся как к группе химической технологии, так и к текстильной и легкой промышленности. Учебник предназначен для студентов химико-технологических и технологических вузов, обучающихся по этим группам специальностей. В учебных планах прохождению специальных дисциплин предшествует изучение дисциплин общехимического цикла, физики и математики, а также основ классической и технической механики, сопротивления материалов. Учебник нацелен на организацию самостоятельной работы студентов по химии и физике полимеров и процессов их переработки. Химия и физика полимеров служат базовой дисциплиной для дальнейшего освоения технологии переработки полимеров, получения изделий из них и изучения поведения этих изделий в различных условиях эксплуатации. [c.3]

    Ступенчатые реакции синтеза полимеров осуществляются чаще всего в расплаве мономеров нрн температурах выше 200°С. Иногда следует вести реакцию в атмосфере инертных газов, чтобы исключить деструкцию и другие побочные процессы. В случае поликонденсации в конце процесса производится вакуумирование системы для удаления выделяющегося низкомолекулярного продукта. Полученную массу полимера измельчают для последующей переработки полимера в изделия. [c.84]


    Некоторое увеличение е возможно после переработки полимера в изделия, если в процессе переработки происходит окисление. [c.35]

    Усадку обычно принимают по соответствующим стандартам на полимер. Для изделий неответственного назначения усадку не учитывают, а при расчете исполнительных размеров оформляющих элементов учитывают их износ по сопрягаемым размерам изделия. Для изделий с повышенными требованиями к точности размеров усадку можно уточнить лишь после изготовления опытных образцов при установившемся режиме переработки. [c.212]

    Физические свойства полиамидов имеют большое значение при переработке этих полимеров в изделия, проектировочных расчетах и определении характеристик сформованных деталей. [c.148]

    В состав современных полимерных материалов обязательно вводятся дополнительные ингредиенты, без которых невозможна ни переработка полимера в изделия, ни эксплуатация этих изделий. [c.143]

    Надмолекулярная структура, являясь одним из наиболее сложных и противоречивых вопросов физики полимеров, имеет очень важное значение для теории и практики. От надмолекулярной структуры зависят физические свойства полимеров (плотность, механическая прочность, температуры переходов и др.), физико-химические (растворимость) и химические (химическая реакционная способность). С особенностями надмолекулярной структуры связана и переработка полимеров в изделия (получение пластмасс, волокон, пленок, бумаги и т.д.). [c.130]

    Но если вернуться к истории вопроса, то именно потому, что 50—40 лет тому назад наиболее изучаемым явлением в полимерах была каучукоподобная эластичность (высокоэластич-ность), из-за которой механические и кинетические характеристики полимеров при разных способах воздействия на них довольно причудливым образом сочетали в себе черты газов, жидкостей и твердых тел, стартовой площадкой для современной физики полимеров явились молекулярная физика, физическая кинетика и физика твердого тела в той ее части, которая связана с механическими свойствами. Именно эти разделы физики полимеров в настоящее время наиболее развиты (количественно и качественно), и именно на них основываются сегодняшние технологии переработки полимеров в изделия, хотя, повторяем, вовсе не это является основной задачей физики полимеров. [c.5]

    При хранении и переработке полимерных материалов, а также при эксплуатации изделий из них полимеры подвергаются воздействию различных факторов — тепла, света, проникающей радиации, кислорода, влаги, агрессивных химических агентов, механических нагрузок. Эти факторы, действуя раздельно или в совокупности, вызывают в полимерах развитие необратимых химических реакций двух типов деструкции, когда происходит разрыв связей в основной цепи макромолекул, и структурирования, когда происходит сшивание цепей. Изменение молекулярной структуры приводит к изменениям в эксплуатационных свойствах полимерного материала теряется эластичность, повышается жесткость и хрупкость, снижается механическая прочность, ухудшаются диэлектрические показатели, изменяется цвет, гладкая поверхность становится шероховатой, а иногда на ней появляется налет порошкообразного вещества. Изменения во времени свойств полимеров и изделий из них называют старением. [c.66]

    При длительном нагревании на воздухе полиэтилен медленно окисляется. При этом происходит его частичная деструкция, снижающая механические и диэлектрические свойства, а также частичное сшивание макромолекул, повышающее вязкость расплава И затрудняющее переработку полимера в изделия методами вальцевания, экструзии и др. Для предотвращения окисления в полиэтилен [c.81]

    Расплав политетрафторэтилена вплоть до температуры термического разложения имеет очень высокую вязкость, что наряду с нерастворимостью затрудняет переработку этого полимера в изделия. Поэтому методы получения изделий из него специфичны. [c.117]

    Большое влияние на свойства полимера, особенно на механические, оказывает его надмолекулярная структура, которая, по существу, задается и определяется режимом переработки полимера в изделия (вполне возможно, что надмолекулярные структуры также возникают непосредственно во время синтеза полимера), т. е. процесс переработки полимера состоит не только в сообщении материалу той или иной формы, но также и в придании ему определенной структуры. [c.450]

    Практическое значение области высокой эластичности полимеров очевидно в связи со специфическими и незаменимыми в технике свойствами высокоэластических материалов. Температурная область пластичности полимеров имеет большое практическое значение для процессов переработки полимеров в изделия. Наконец, на стыке двух температурных областей в районе температуры стеклования имеется интервал, где наблюдаются максимальные деформации прн небольших прочностях. Этот температурный интервал часто используется в технологии вытяжки полимерных материалов. [c.79]


    Процесс производства изделий из высокомолекулярных соединений состоит из двух основных стадий производства (синтеза) полимера или выделения его из природных материалов и переработки полимера в изделия. [c.376]

    Первая стадия рассматривается в главе VI, вторая, в зависимости от направления использования,—в главах УИ, УП1 и IX. На стадии переработки полимеров получают изделия заданной конфигурации, при этом полимер приобретает определенную молекулярную структуру. Такие процессы осуществляются при формовании резиновых изделий путем прессования, каландрования, литья под давлением с последующей или одновременной вулканизацией (стр. 519 сл.), изготовления изделий из пластических масс методом литья, прессования и др. (стр. 531), при отливке пленок из раствора полимера, при изготовлении химических волокон (формование, вытяжка, стр. 443). [c.376]

    Полимер, получаемый эмульсионным методом, всегда содержит следы веществ, применяемых в качестве коагулянтов и эмульгаторов кроме того, он несколько загрязняется пылью во время сушки и хранения. Для большего удобства транспортирования, хранения и последующей переработки полимера в изделия методами прессования или литья под давлением полученный порошок подвергают гранулированию в шнек-машинах или развальцовывают в виде листов (в производстве синтетических каучуков). [c.423]

    В остальном должны соблюдаться общие правила техники безопасности для работы на производствах переработки полимеров в изделия. [c.39]

    Пластификаторы применяются для модификации полимеров с целью создания полимерных материалов с комплексом необходимых технологических свойств и облегчения переработки пластифицированных полимеров в изделия. [c.337]

    Кратко этот процесс был описан в главе, посвященной классификации систем полимер — растворитель. Здесь будут более подробно рассмотрены условия застудневания растворов полимеров, а также структура и свойства образующихся студней, та как процессы отверждения растворов путем застудневания играют важную роль в технологии переработки полимеров в изделия. [c.171]

    В состав полимерных материалов, кроме высокомолекулярного вещества, обязательно вводятся дополнительные ингредиенты, без которых невозможна ни переработка полимера в изделия, ни эксплуатация этих изделий. К таким вспомогательным веществам относятся в первую очередь стабилизаторы, предохраняющие полимер от старения под действием света, радиации, тепла, кислорода и озона воздуха и т. д. При изготовлении резиновых изделий для формирования требуемого комплекса физи-ко-механических и эксплуатационных свойств резины необходимо вводить в резиновые смеси специально подобранные агенты вулканизации, ускорители, модификаторы, ускорители пластикации. [c.5]

    Реологические характеристики, полученные при различных температурах и напряжениях сдвига для полимеров разных молекулярных масс, молекулярно-массовых распределений и полимерных систем разного состава, дают возможность научно обосновать, правильно выбрать и усовершенствовать процесс переработки полимеров в изделия [20]. [c.74]

    Монография предназначена для научных и инженерно-технических работников, занимающихся исследованием полимеров, переработкой пластмасс, формованием изделий из резиновых смесей и получением волокон. Она будет полезна студентам и аспирантам, специализирующимся в соответствующих областях науки и техники. [c.240]

    Молекулы полимера невозможно перевести в газообразную фазу без их деструкции, поэтому единственным способом удаления макромолекул на достаточное расстояние друг от друга для изучения их структуры (определения молекулярной массы, формы и размера, параметров жесткости и др.) является растворение полимеров в низкомолекулярных растворителях. Переведение полимеров в раствор предшествует также их разделению, смешиванию, а также многим технологическим процессам переработки полимеров в изделия. Поэтому сведения о растворимости того или иного полимера в соответствующем наборе растворителей очень важны. [c.19]

    Показано, что полученные эфирокислоты могут служить исходным сырьем для синтеза новых органических соединений. Установлено, что бутиловые эфиры эфирокислот могут быть применены в качестве пластификаторов при переработке полимеров в изделия. Составлен технологический регламент процесса получения эфирокислот. Показано, что процесс может быть осуществлен на любых промышленных установках по выработке синтетических жирных кислот без внесения каких-либо изменений. [c.324]

    Совершенно очевидно, что большие обратимые деформации полимеров (т. е. опособность проявлять высокоэластичность) не всегда являются достоинством для конструкционных материалов, а в определенных условиях чрезвычайно вредны, например, в тех случаях, когда полимерному материалу необходимо придать определенную форму. Заданная форма изделия наилучшим образом сохранится тогда, когда деформация расплава (или раствора) полимера истинно необратима, т. е. является деформацией вязкого течения. Поэтому практически все методы переработки полимеров в изделия (начиная от автопокрышек и кончая волокнами и пленками) основаны на переводе полимера в вязкотекучее состояние и придании ему формы именно в этом состоянии, когда вся деформация полимера или ее большая часть является необратимой. [c.126]

    Свойства. П.— линейный кристаллич. полимер белого цвета. Для технич. целей применяют П. мол. массы от нескольких сотен тысяч до 10 млн. Стеиень кристалличности П. ок. 90% при переработке полимера в изделия (нагревание выше темп-ры плавления) этот показатель снижается до 50—85% в зависимости от мол. массы П. и режима охлаждения изделий. Максимальная скорость кристаллизации наблюдается при 310—315 С. [c.322]

    По отношению к нагреванию ПлМ подразделяются на термопластичные или термопласты, полимерная фаза которых при горячем формовании изделия не отверждается и ПлМ сохраняет способность переходить вновь в вязкотекучее состояние при повторном нагреве, и термореактивные или реактоп-ласты, переработка которых в изделия сопровождается реакциями образования трехмерной структуры в полимерной фазе (отверждение полимера) и изделие необратимо теряет способность переходить в вязкотекучее состояние. [c.386]

    Переработку полимера в изделия можно проводить методом прессования, литья под давлением, стержневого прессования. Предварительное ориентирование полимера для повышения прочности изделий несколько усложняет проиесс подготовки его к формованию. Подготовка заключается в нагревании полимера до 200—260 и продавливании в нагретом состоянии через капилляры. [c.391]

    Реология представляет собой науку о деформации и течении материалов. В случае полимеров реология позволяет получить результаты, дополняюшие теорию упругости п гидродинамику, что важно для физического и математического описания процессов переработки полимеров в изделия. Процессы течения полимеров подчиняются некоторым закономерностям, наблюдаемым в аномально вязких низкомолекулярных системах. Однако неньютоновское течение полимеров не описывается предложенным Эйрингом энергетическим механизмом. Механизм вязкого течения полимеров, предложенный Бартеневым, является энтропийным, как и механизм высокоэластической деформации полимеров. Для полимеров с высокой молекулярной массой оказывается справедливым правило логарифмической аддитивности вязкости. [c.172]

    Наиб, широко О. используют в качестве связующих для наполненных, особенно слоистых пластиков (см. Пластические. массы), таких, как клеи синтетические и лаки (см., напр., Алкидные смолы, Кремнийорганические лаки, Полиэфирные лаки. Эпоксидные лаки), в компаундах полимерных, для получения пенопластов (напр., пенофенопластов), герметиков. Получил распространение прием временной пластификации высокомол. полимеров реакционноспособными О., что позволило упростить переработку полимера в изделие и модифицировать его св-ва. Из реакционноспособньгх О. наиб, практич. значение имеют меламино-формальдегидные смолы, мочевино-формальдегидные смолы, феноло-альдегид-ные смолы, алкидные смолы, эпоксидные смолы, олигомеры акриловые. [c.376]

    К П. к. относят красители, растворяющиеся в расплаве в концентрациях, превышающих, по крайней мере в несколько раз, концентрации П. к., необходимые для достижения интенсивных окрасок и составляющие 0,5% от массы полимера. Для повышения р-римосги в П. к. иногда вводят разл. заместители, напр, группировки, содержащие длинные алифатич. цепи. Р-римость зависит также от св-в полимера и т-ры расплава, вследствие чего одно и то же в-во может вести себя в разных полимерах как П. к. либо как пигмент (см. Пигменты). По сравнению с последними П. к. равномерно распределяются в окрашиваемых субстратах, не требуя предварит, диспергирования не ухудшают физ.-мех. показателей полимеров и изделий из них, что особенно важно для волокон вводятся в меньших концентрациях При достижении равной интенсивности окрасок. Однако П. к., как правило, уступают пигментам по устойчивости в расплавах полимеров, что ограничивает методы их введения и послед, переработки в изделия. Кроме того, возможна миграция красителя, степень к-рой зависит от структуры и св-в полимера в случае трехмерной структуры и при наличии центров, способных образовывать разл. рода связи с П. к. (ионные, водородные, ван-дер-ваальсовы), миграция понижается. Исключить миграцию можно при использовании П. к., ковалентно связывающихся с полимерами, напр, для крашения полгофнров в П. к. иногда вводят карбокси-группы. [c.13]

    В ряде случаев, однако, образование сетчатых полимеров прн полимеризации нежелательно. Например, при получении из ацетилена моновинилацетилена, применяемого для синтеза хлоро-прена, в качестве побочного продукта образуется дивинилацетилеи СНа=СН—С=С—СН = СНг. В его присутствии при полимеризации хлоропрена образуется полйхлоропрен сетчатого строения, чтс осложняет переработку полимера в изделия. Поэтому для получения полихлоропрена высокого качества необходима тщательная очистка моновинилацетилена от примесей. [c.44]

    В разделах второй части тома рассматриваются процессы и аппараты, которые являются традиционными для химических и смежных с ними производств. Это механические процессы — классификация твердых частиц по размерам и извлечение их из потоков жидкости и газа тепло- и массообменные процессы — вьтарка, сушка, ректификация и дистилляция, адсорбция и абсорбция, экстракция из жидкости и твердого тела, кристаллизация, реакционные процессы, происходящие в различных химических реакторах и печах мембранные процессы разделения жидкостей и газов технология и оборудование переработки полимеров в изделия. [c.6]

    Ранее в лаборатории авторов были выполнены исследования il] деструкции при экструзии полистирола со средневесовым молекулярным весом М , 6,7-10 и узким молекулярновесовым распределением (МВР). Опыты проводили с помощью капиллярного реометра Instron , который использовался в качестве приспособления для создания высоких скоростей сдвига, моделирующих реальный процесс переработки полимера в изделие. Для оценки МВР образцов после экструзии использовали метод гель-проникающей хроматографии. Эту же методику использовали и в настоящей работе при исследовании высокомолекулярного образца полистирола с 1,8-10 . При этом варьировали различные параметры процесса, что позволило получить некоторые результаты, отличные от описанных ранее. [c.191]

    ПЛАСТИКАЦИЯ ПОЛИМЕРОВ, происходит при нагрев, и (или) интенсивной мех. обработке материала. В результате пластикации (П.) облегчается переработка полимера в изделие. Прн П. каучуков уменьшается высокоэластическая и увеличивается пластич. составляющая их деформа-иии, гл. обр. вследствие деструкции макромолекул. П. пластмасс — размягчение (плавление) материала в условиях, исключающих возможность заметной деструкции. П. осуществляется в спец. обогреваемых узлах перерабатывающего оборудования (напр., при литье под давл.) или одновременно с др. технол. операциями (напр., при смешении полимера с ингредиентами, экструзии). Для П. каучуков используют также спец. машины (пластикаторы). ПЛАСТИКИ, то же, что пластические массы. ПЛАСТИФИКАТОРЫ, 1) вещества, к-рые вводят в состав полимерных материалов для придания (или повышения) эластичности и (или) пластичности при переработке и эксплуатации. Облегчают диспергирование ингредиентов, снижают т-ру технол. обработки композиций, улучшают морозостойкость полимеров, но иногда ухудшают их теплостойкость. Нек-рые П. могут повышать огне,- свего- и термостойкость полимеров. Общие требования к П. хорошая совместимость с полимером, низкая летучесть, отсутствие запаха, хим. инертность, стойкость к экстракции из полимера жидкими средами, вапр. маслами, моющими ср-ваМи. Наиб, распространенные П.— сложные эфиры, вапр. диоктилфталат, дибутилсебацинат, три(2-этилгексил фосфат. Использ. также минер, и невысыхающие растит, масла, эпоксидированное соевое масло, хлориров. парафины и др. Кол-во П. в композиции — от 1—2 до 100% (от массы полимера). Осн. потребитель П.— пром-сть пластмасс (ок. 70% общего объема произ-ва П. расходуется на изготовление пластиката). См. также Мягчители. 2) Поверхностно-активные добавки, к-рые вводят в строит, р-ры и бетонные смеси (0,15— 0,3% от массы вяжущего) для облегчения укладки в форму и снижения содержания воды. Широко используемый П. этого типа — сульфитно-спиртовая барда. [c.446]

    Санитарно-химические исследования. Загрязнение среды, контактирующей с поверхностью полимерного материала, веществами, к-рые могут неблагоприятно воздействовать на организм, обусловлено совокупностью взаимоде11Ствий между материалом и средой. Из материала мигрируют содержащиеся в нем низкомолекулярные соединения — остаточные мономеры, растворители, катализаторы, пластификаторы, стабилизаторы и др., а также продукты деструкции, гидро.ти-за и др., образовавшиеся при переработке полимера в изделие н нри эксплуатации последнего в условиях действия высокой томи-ры, радиации, механич. нагрузок и др. Т. обр., сама контактирующая с иолимером среда можот вызывать реакции, приводящие к образованию низколголекулярных мигрирующих соединенигг. [c.179]


Смотреть страницы где упоминается термин Полимеры переработка в изделия: [c.146]    [c.44]    [c.86]    [c.446]    [c.44]    [c.441]    [c.9]    [c.318]    [c.83]    [c.93]    [c.59]    [c.164]   
Акриловые полимеры (1969) -- [ c.157 ]




ПОИСК







© 2025 chem21.info Реклама на сайте