Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенилендиамины свойства

    Ароматические полиамиды [6] с полупроводниковыми свойствами получают поликонденсацией ангидридов или хлорангидридов ароматических дикарбоновых кислот с ароматическими диаминами, например фталевого ангидрида с л-фенилендиамином  [c.421]

    В связи с этим ниже кратко рассмотрены свойства и характеристики анионитов, которые применяются для очистки вод. Аниониты представляют собой искусственные смолы, которые получаются методами поликонденсации или полимеризации различных органических соединений фенилендиамина, мочевины, меланина, гуанидина, полиэтиленполиамина и др. [c.152]


    В работах [449-451] рассматриваются свойства диафена ФП, других производных фенилендиамина, а также их влияние на свойства резин. [c.285]

    В табл. 1.6 сопоставлены свойства поли , еров на основе цис-и гра с-изомеров сложных ДГЭ гексагидрофталевой кислоты, отвержденных г-фенилендиамином по следующему режиму 1 ч при 80°С- -6 ч при 160 °С [20]. Можно видеть, что полимеры на основе 1(ис-изомеров характеризуются несколько более высокими значениями ТТД, что, очевидно, обусловлено усилением межмолекулярного взаимодействия цепей об этом свидетельствует большее значение модуля упругости. По-видимому, с этим же связано наблюдаемое в случае полимеров на основе г<ис-изоме-ров некоторое увеличение прочности. [c.16]

    Полноту восстановления нитропродукта проверяют различными способами в зависимости от природы и свойств нитропродукта и аминосоединения. Часто о конце реакции судят по цвету вытека редукционной массы на фильтровальной бумаге. Многие нитросоединения окрашены в желтый цвет, в то время как соответствующие амины бесцветны. Поэтому желтое окрашивание вытека (иногда появляющееся лишь при действии раствора едкого натра) указывает на то, что восстановление нитропродукта не закончено. В этом случае добавление нитропродукта в реакционную массу прекращают и возобновляют его лишь после появления бесцветного вытека пробы на фильтровальной бумаге. Такой метод контроля полноты восстановления применяется, например, в производстве ж-фенилендиамина. В производстве анилина восстановление ведут при кипячении реакционной массы в аппарате с обратным холодильником. Полноту восстановления в этом случае определяют по изменению цвета конденсата от оранжевого до молочно-белого. [c.106]

    Растворители могут оказывать влияние на свойства пленок за счет изменения скорости и глубины образования пространственной сетки. Так, при отверждении смолы Э-40 Л1-фенилендиамином лучшие результаты были получены при использовании следующих растворителей диметилового эфира диэтиленгликоля [c.150]

    С(А) равно 0,8 для трифениламина и —3 для диметил-/г-фенилендиамина [169, 171]. При возрастании электроноакцепторных свойств среды по- [c.70]

    А была приписана основной форме красителя, а полоса при 5380 А — сопряженной кислоте, образовавшейся при реакции основного красителя или с протоном, или с атомом алюминия, как с кислотой Льюиса. Повышение температуры термической обработки катализатора вызывало увеличение интенсивности полосы поглощения кислотной формы, показывая, что число эффективных кислотных центров возросло. Для того чтобы определить, являются ли эти кислотные центры центрами с льюисовской кислотностью, был исследован спектр адсорбированного ара-фенилендиамина. Это соединение — типичный донор электронов — пригодно для обнаружения электроноакцепторных свойств. Были обнаружены полосы при 3240 и 4680 А. Первая полоса приписана свободному (физически адсорбированному) диамину путем сравнения с полосой [c.64]


    Anta ge F — Ы,Г -ди-2-нафтил-п-фенилендиамин. Свойства серый порошок уд. вес 1,20 т. ил. 228—234°. [c.36]

    Растворимость в воде и гидролитическая стабильность. Большинство антиоксидантов имеет низкую растворимость в воде. Однако некоторые производные п-фенилендиамина имеют высокую растворимость в водных растворах минеральных и органических кислот (например, некоторые алкилфенилзамещенные и ди-алкилпроизводные). Это необходимо учитывать при разработке технологии промывки и водной дегазации каучуков. Необходимо также учитывать, что некоторые производные фенолов имеют повышенную растворимость в водных растворах щелочей. Гидролитическая стабильность является очень важным показателем при выборе антиоксидантов. Как правило, все наиболее распространенные антиоксиданты при умеренных температурах и в нейтральных средах гидролитически стабильны. Вместе с тем, если в молекуле антиоксиданта имеются определенные группировки атомов (напри-мер, сложноэфирные группы), то в условиях контакта с водой (при определенных значениях pH и повышенных температурах) может наблюдаться гидролиз антиоксидантов. В результате может произойти потеря антиоксидантом свойств ингибитора цепных [c.645]

    Чертковым с сотрудниками [284, с. 91] исследовано влияние на осадкообразование в топливах для турбовоздушных реактивных двигателей соединений различных классов, которые были разделены на две большие группы антиокислители и поверхностно-активные вещества, обладающие антиокислительными и диспергирующими свойствами. К первой группе относятся ароматические М-замещенные и незамещенные амины и оксиамины, Ы-замещенные производные карбамида и тиокарбамида ко второй — алифатические амины соли, образованные полиаминами и жирными кислотами, М-ациламины, эфиры и неполные соли три-этиламина, неполные эфиры диэтиленгликоля и жирных кислот, а также гетероциклические соединения. Лучшими присадками для стандартных прямогонных топлив и топлив, содержащих крекинг-. компоненты и применяемых при повышенных температурах, оказались алифатические амины Сю—С40, несколько меньшей эффективностью обладают эфиры триэтаноламина и неполных эфиров многоатомных спиртов с жирными кислотами. Осадкообразование топлив с повышенным содержанием меркаптанов снижается наиболее значительно при добавлении гетероциклических соединений. В то же время обычные низкотемпературные антиокислители (п-гидроксидифениламин, фенил-а-нафтиламин, Ы,Ы -ди-вгар-бу-тил- -фенилендиамин, 2,4-диметил-6-трег-бутилфенол, 4-метил-2,6-ди-трет-бутилфенол и фенолы каменноугольного происхождения), применяемые при хранении топлив, в условиях повышенных температур не уменьшают осадкообразования, а наоборот, сами окисляются и иногда выпадают в осадок. [c.254]

    Положительный эффект ряда антиокислителей установлен при сравнительных испытаниях топлив без присадок и с присадками на стендах с узлами трения топливной аппаратуры [6, 7. 32]. Так, значительное улучшение противоизносных свойств получено при добавлении к топливу 0,005% масс, фенил-га-аминос енола или диалкил-п-фенилендиамина [7] (рис. 42). Антиокислитель ФЧ-16 исследован в топливах Т-2, ТС-1, Т-7 и в топливе широкого фракционного состава, содержащем компоненты крекинга противоизносные свойства всех этих топлив при добавлении до 0,01% присадки значи- [c.170]

    Значительное внимание в качестве антиокислителей заслуживают некоторые азотистые соединения, главным образом аминного характера. Эффективными присадками являются, например, а- и / -нафтиламины, а- и /3-фенилнафтиламины, производные фенилендиамина, дифениламин и его производные, дифенилгидра-зин и др. Гетероциклические соединения, содержащие азот, такие, как пиридин и хиполин, антиокислительными свойствами не обладают. [c.306]

    Оба соединения бесцветны и очень легко разлагаются при нагревании с разбавленной серной кислотой они гидролизуются до хинона и аммиака. Неустойчивость по отношению к минеральным кислотам является хара1 терным свойством соединений этого класса. Хинон-иминь так же легко восстанавливаются, как хиноны наиример, при действии двухлористого олова хинонмоноимин восстанавливается до и-аминофенола, а диимин—до фенилендиамина. [c.709]

    Свойства рассматриваемых полимеров, безусловно, во многом определяются их химическим строением. Многие из них обладают высокими термическими характеристиками. Например, температура начала уменьшения массы на воздухе (при скорости подъема температуры 4,5 град/мин) полигексазоцикланов на основе пиромеллитонитрила, и-фенилендиамина и 4,4 -диаминодифенилоксида -400 °С. Первый полимер не размягчается до температуры интенсивного разложения, второй - под нагрузкой 98 кгс/см размягчается при 225 °С, но подвергнутый затем прогреву структурируется и не размягчается вплоть до разложения. Поли-гексазоциклан на основе и-фенилендиамина растворим лишь в серной кислоте использование в качестве исходных двух- и трехъядерных ароматических диаминов и тетранитрилов с кислородными мостиками между фениленовыми ядрами, а также диаминов с боковыми кардовыми группировками приводит к образованию полимеров, растворимых в апротонных растворителях [326]. [c.237]


    Весьма интересен полиэфиримид, получаемый из 4-нитрофталевого ангидрида, ж-фенилендиамина и 4,4 -дигидроксидифенил-2,2-пропана, выпускаемый фирмой "General Ele tri (США) под названием "Ultem " [216, 226-232]. Это хорошо перерабатываемый высокопрочный термопласт с высокими термическими характеристиками, огне- и хемостойкостью, ценными электроизоляционными и другими свойствами, успешно применяемый в качестве конструкционного материала в самых разнообразных областях. [c.296]

    Из ароматических полиамидов производится полимер под марк фенилон , получаемый из хлорангидрида изофталевой кислоты и ме фенилендиамина. Нл основе фенилона получают термостойкое воле но. Ценными свойствами обладают арилалифатические полиамиды ароматических диаминов и алифатических кислот, а также жирноар матических диаминов п- и и -ксилилендиаминов, обладающие высою прозрачностью. [c.131]

    При производстве аминосоединений и при обращении с ними необходимо помнить о вредностях, связанных с производством. Те амины, которые не имеют сульфогруппы в своем составе, заслуживают с этой стороны наибольшего внимания. Анилин как самый употребительный в разных производствах амин особенно известен своими токсическими свойствами. Но и другие амины, как жидкие (о-толуидин, о-анизидин), так и твердые (а-нафтиламин), также и полиамины (л<-фенилендиамин) и аминооксисоединения далеко не безвредные вещества. В рабочие помещения, где производятся или перерабатываются амины, пары последних не должны проникать, так как вдыхание их вредно отзывается на кровеносной системе. Не должно допускать попадания аминов или нх растворов на кожу работаюш,их в случае загрязнения кожи амином необходимо освободить это место от одежды и тщательно промыть теплой водой (подкисленной), а затем с мылом. Одежду, облитую амином, необходимо сейчас же сменить и не надевать до устранения с нее загрязнения. Чаще мыть руки в рабочих помещениях, следить за чистотой у аппаратов и в помещении, не брать пищи невымытыми руками, не употреблять спиртных напитков не только во время работы, но и вне ее, — вот основные правила личной гигиены, которые при соблюдении общих правил охраны труда в рабочих помещениях делают достаточно безопасной работу по производству и переработке аминов. [c.156]

    Пример. Резиновая смесь состава (ч) 25 НК 75 СКС 45 техуглерода 2 сантофлекса-13 1 диарил-п-фенилендиамина 1 микрокристаллического воска 3 стеариновой кислоты 1,6 S 0,4 дифенилгуанидин 0,8 2-(морфолинотио)бензтиазола и 3 ZnO. Вулканизующую группу вводили, применяя в качестве носителя ПЭ. При этом показатели физико-механических свойств составили (в скобках показатели контрольной резины) модуль при удлинении на 50, 100 и 300 % соответственно 1,52 2,51 и 10,8 (1,2 1,85 и 8,85) МПа условная прочность при растяжении 12,5 (21,7) МПа относительное удлинение 332 (572) %. [c.162]

    Одним из широко применяемых стабилизаторов шинных резин является Ы-фенил-Ы -изопропил-п-фенилендиамин (диафен ФП). Однако функциональные свойства диафена ФП в шинных резинах реализуются не полностью вследствие его плохого распределения в резиновых смесях и ускоренной миграции его молекул из шин в процессе эксплуатации [202]. Для устранения этих недостатков диафена ФП на АО "Нижнекамскшина совместно с КГТУ проводились исследования по физикохимической модификации его молекул путем получения молекулярных комплексов в эвтектических расплавах с электрофил ьными компонентами резиновых смесей [177.  [c.198]

    На 7-ом симпозиуме Проблемы шин и резинокордных композитов , прошедшем в Москве в 1996 году, Генкина Ю.М. и Кавун С.М. сделали доклад, посвященный прогнозированию свойств стабилизаторов класса п-фенилендиаминов методом компьютерной химии. Было проанализировано 12 различающихся строением заместителей при атомах азота N, N -замещенных п-фенилендиамина по их влиянию на такие свойства [c.212]

    В резиновых смесях ФСП проявляют свойства ускорителя серной вулканизации, а в резинах — неокрашиваюш,его стабилизатора, более эффективного, чем агидол 2 бис-(2-окси-5-ме-тил-3-трет-бутилфенил)метан или синергической системы, состоящей из неозона Д (фенил-р-нафтиламин) и диафена ФП (М-изопропил-Ы -фенил-и-фенилендиамин). Вследствие проявления полифункционального действия, пол) енные соли в резиновых смесях и резинах могзгг быть использованы взамен вторичного ускорителя серной вулканизации и синергической системы противостарителей [34]. [c.217]

    Различные цветные реакции, которые неоднократно наблюдались при изучении свойств р-диаминов, несомненно, связаны с их склонностью к окислению в хиноидные соединения. Например, интенсивное зеленовато-синее окрашивание, наблюдающееся при прибавлении хлорного железа к раствору р-фенилен-диамина, смешанному с небольшим количеством анилина, вызывается образованием индамина (XII). Тот же продукт образуется при прибавлении двухромовокислой соли к эквимолекулярно.му количеству р-фенилендиамина, растворенному в раэбавленной уксусной кислоте. Если же окисление ведется в присутствии двух молей анилина,— образуется сафранин (XIII) [c.386]

    Сопоставление релаксационных свойств представляет особый интерес с, мпа в тех случаях, когда радикалы Н молекул диамина и ангидрида имеют близкое строение, например при использовании бутилендиамина и янтарного ангидрида или о-фенилендиамина (ОФДА) и фталевого ангидрида. На рис. 2.1 приведена температурная зависимость модуля сдвига С и коэффи- 20 [c.49]

    Дигидрохиноксалины. При взаимодействии окиси мезитила с о-фенилендиамином получается вещество, представляющее собой, очевидно, дигидрохиноксалин, который, однако, не проявляет характерных свойств [c.397]

    Научные исследования посвящены органической химии. Изучая (с 1839) химическую природу веществ методами окисления и восстановления, разработал (1841) методы получения бензоина из бензальдегида и бензила окислением бензоина. Это был первый случай бензоиновой конденсации— одного из универсальных способов получения ароматических кетонов. Впервые синтезировал (1841) бен-зиловую (дифенилгликолевую) кислоту, описал ее свойства и установил состав. Открыл (1842) реакцию восстановления ароматических нитросоединений, послужив-щую основой новой отрасли химической промыщленности — анилокрасочной. Таким путем получил анилин и а-нафтиламин (1842), л-фенилендиамин и дезоксибензо-ин (1844), бензидин (1845). Открыл (1845) перегруппировку ги-дразобензола под действием кислот — бензидиновую перегруппировку . Показал, что амины — основания, способные образовывать соли с различными кислотами. Получил (1852) аллиловый эфир изо-тиоциановой кислоты — летучее горчичное масло — на основе иодистого аллила и роданида калия. Установил, что при взаимодействии этого масла с анилином образуется аллилфенилтиомочевина. Изучал (1854) реакции образования и превращения производных [c.201]

    Относительная ошибка определения [195] составляет 2—4%-Определение двухкомпойентных смесей изомеров фенилендиамина в среде смешанных растворителей. Определение смесей изомеров диаминов представляет особый интерес, так как р/С (НгО) их очень близки, а свойства подобны. В среде смешанных растворителей, содержащих углеводород, с низким значением диэлектрической проницаемости (бензол или хлороформ) и амфипротный рас- [c.95]


Смотреть страницы где упоминается термин Фенилендиамины свойства: [c.234]    [c.61]    [c.158]    [c.369]    [c.230]    [c.257]    [c.50]    [c.129]    [c.386]    [c.386]    [c.250]    [c.376]    [c.427]    [c.429]    [c.89]    [c.96]    [c.330]    [c.145]    [c.146]    [c.148]    [c.149]    [c.96]    [c.657]   
Промышленный синтез ароматических нитросоединений и аминов (1964) -- [ c.287 ]




ПОИСК





Смотрите так же термины и статьи:

Фенилендиамины



© 2024 chem21.info Реклама на сайте