Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Особенности структуры аминов

    Использование реакций комплексообразования для разделения катионов металлов. В результате взаимодействия катионов металлов с комплексообразующими веществами, особенно анионного характера, изменяются основные характеристики ионов, влияющие на селективность поглощения — знак и величина заряда, структура и размеры ионов, их способность к гидратации и влияние на упорядоченность структуры воды. Эти характеристики можно изменять в широких пределах в зависимости от свойств разделяемых ионов и комплексообразующих реагентов. Комплексообразующие реагенты анионного характера (например, анионы слабых кислот) более перспективны, чем реагенты молекулярного характера (например, амины), так как взаимодействие с последними не изменяет одну из основных характеристик катионов металлов — величину их заряда. Использование реакций комплексообразования позволяет увеличивать разницу в селективности ионообменного поглощения близких по свойствам ионов металлов и вследствие. этого значительно улучшать эффективность разделения. Для ионообменно-хроматографического разделения реакции комплексообразования используют в сс-новном в двух вариантах. [c.198]


    Как видно из общей формулы, аминокислоты будут отличаться друг от друга химической природой радикала К, представляющего группу атомов в молекуле аминокислоты, связанную с а-углеродным атомом и не участвующую в образовании пептидной связи при синтезе белка. Почти все а-амино- и а-карбоксильные группы участвуют в образовании пептидных связей белковой молекулы, теряя при этом своп специфические для свободных аминокислот кислотно-основные свойства. Поэтому все разнообразие особенностей структуры и функции белковых молекул связано с химической природой и физико-химическими свойствами радикалов аминокислот. Именно благодаря им белки наделены рядом уникальных функции, не свойственных другим биополимерам, и обладают химической индивидуальностью. [c.34]

    Особенности структуры аминов 129 [c.6]

    Особую и весьма важную группу моносахаридов, значение которой-быстро возрастает в последние годы, составляют соединения, чрезвычайно близкие по структуре и химическому поведению к обычным альдозам и кетозам, состав которых, однако, отличается от С мОп-Сюда относятся так называемые дезоксисахара, т. е. моносахариды, которые отличаются от обычных представителей этого класса только-отсутствием одной или двух гидроксильных групп. Не меньшее значение имеют азотсодержащие моносахариды, так называемые амино-сахара — соединения, отличающиеся от обычных моносахаридов тем, что вместо части гидроксильных групп (чаще всего вместо одной из-них) содержат аминогруппу или какую-либо замещенную аминогруппу. В последнее время выделены многочисленные представители моносахаридов, которые являются одновременно дезокси- и аминосахарами. Особенно часто они встречаются в антибиотиках. Все эти, а также и некоторые другие моносахариды специфической структуры, по химическому облику соответствуют в общем моносахаридам однако они вместе с тем проявляют и ряд специфических свойств, что заставляет рассматривать их отдельно от нормальных моносахаридов. [c.9]

    Особенности структуры аминов [c.129]

    Особенности структуры аминов 131 [c.6]

    Изменения процента экстракции серной кислоты и процента экстракции ТЬ и и (IV) из сульфатных систем с изменением структуры аминов по крайней мере внешне аналогичны (см. табл. 2). И в данном случае не отмечается резкого различия между классами аминов, и сильно разветвленные вторичные амины более подобны неразветвленным третичным, чем разветвленным вторичным аминам. Однако тип разбавителя влияет в прямо противоположном направлении, чем при экстракции металлов. По-видимому, есть основания предположить, что ассоциация молекул бензола и особенно хлороформа с амином по влиянию на экстракцию может напоминать повышенную развет- [c.205]


    Природа стадии, лимитирующей скорость, и соответствующего переходного комплекса пока не установлена. По аналогии с большим числом реакций карбонильной группы, при которых в ней происходит разрыв связи углерод—кислород, предполагается образование нестойкого тетраэдрического промежуточного соединения [58, 134]. Возникает интересный вопрос включение какой группы приводит к его образованию — молекулы воды или остатка Glu-270 Вторая возможность подразумевает ковалентное присоединение субстрата к белку и требует протекания второй реакции замещения, в которой происходит атака ацилфермента водой. Исходя из особенностей структуры, наиболее вероятен в качестве ковалентного промежуточного соединения ангидрид с участием остатка Glu-270. Однако нуклеофильная способность карбоксильной группы обычно невелика, а амин является плохой уходящей группой [58]. С другой стороны, есть основания полагать, что остаток Glu-270 как основание катализирует атаку воды по атому углерода карбонильной группы. [c.549]

    Два последних примера показывают, каковы должны быть особенности структуры амфолитов, отвечающих условиям образования градиента, т. е. обладающих способностью задавать раствору нужное значение pH, при этом нейтрализуясь и обеспечивая хорошую буферную емкость раствора. По-видимому, это должны быть молекулы, несущие комбинации из нескольких, не обязательно первичных, аминов и карбоксилов (или других кислотных остатков), связанных между собой короткими углеводородными цепочками таким образом, чтобы взаимная нейтрализация зарядов при растворении сопровождалась установлением нужного pH раствора, равного р1 данного амфолита. Для обеспечения хорошей буферной емкости значение р1 должно лежать между двумя близко расположенными р (. [c.9]

    Особенностью аминов является наличие свободной электронной пары у атома азота, что определяет такие их свойства, как основность (т. е. способность связывать протон и образовывать соли Н3С—ЫН 2). Свободная электронная пара атома азота способна взаимодействовать с вакантной орбиталью Н +, поэтому амины являются основаниями. Степень основности зависит от структуры заместителей у атома азота. [c.252]

    В результате последующих реакций присоединения, в которые вступает этот альдимин, образуются вторичные и третичные амины. Образованию первичного амина способствуют присутствие значительного количества аммиака при гидрировании и применение высокоактивных катализаторов. По опубликованным данным [50 кобальт обладает более высокой избирательностью в образовании первичных аминов, чем никель. Из ароматических нитрилов, по-видимому, первичные амины образуются легче, чем из алифатических. Нитрилы, которые вследствие особенностей их структуры обладают большой склонностью к разложению в результате гидрогенолиза, предпочтительно гидрировать при сравнительно низкой температуре. Для этого целесообразно применять родиевые катализаторы в этом случае быстрое гидрирование легко расщепляющихся нитрилов можно проводить при 25° С и давлении водорода За/пи ниже [43]. [c.233]

    Амины. Классификация. Номенклатура, особенности структуры, физические оголства и получение аминов, [c.192]

    В подобных структурах атом азота обобществляет с кольцом более чем одну пару электронов и, таким образом, несет на себе заряд карбониевого иона. Итак, основность азота объясняет еще одну характерную особенность ароматических аминов. [c.717]

    Легкая окисляемость атомов углерода, соседних с карбоксильными группами, и особенно атомов углерода при двойных связях обусловлена химической структурой триглицеридной молекулы. Предотвратить сильное окисление без изменения структуры такой молекулы невозможно. Эффективность антиокислителей зависит, главным образом, от химической структуры молекул триглицеридов, а также от содержания свободных жирных кислот и других примесей в масле. Традиционные ингибиторы окисления фенольного и аминного типа практически не изменяют стабильность масел (табл. 4.18). Существенного эффекта не дают также диалкилдитиофосфаты цинка и их сочетания с пассиваторами металлов. В то же время следует отметить, что данные об эффективности антиокислителей в различных жирах подчас весьма противоречивы и не всегда сопоставимы. Так, например, диалкилдитиофосфаты цинка, не повышающие стабильность рапсового масла, оказались эффективны в воске хохобы. Отмечено, что как антиокислители наиболее эффективны фенолы типа 2-нафтола, гидрохинон, ароматические амины. Эффективны соединения, содержащие более одного бензольного цикла. Установлено также, что ни гидроксил фенолов, ни аминогруппа сами по себе не определяют антиокислительные свойства. Главным фактором является строение соединений с этими функциональными группами и расположение этих групп в молекуле. В связи с этим весьма важным и перспек- [c.220]


    Образование активных центров на поверхности капилляров обусловлено рядом причин, в том числе наличием в стекле примесей и особенностями структуры стекла. Содержащиеся в поверхностном слое оксиды металлов, которые добавляют в стекло на стадии его получения, проявляют свойства льюисовых кислот [20, 71, ПО, 226] и способствуют адсорбции молекул с неподеленной электронной парой, например аминов и кетонов. Молекулы, содержащие л-электроны, например ароматические углеводороды и олефины, также взаимодействуют с льюисовыми кислотами. Оксиды бора и алюминия являются более сильными лКюисовьши кислотами, чем оксиды магния и кальция, и более слабыми. [c.79]

    Селективность аминов увеличивается при переходе от первичных к третичным аминам. Наибольшая селективность наблюдается у третичных аминов, особенно у симметричных, например, триизо-октиламин [7]. В источниках [70], [77], [78] не уточняется класс и структура амина, используемого в качестве экстрагента. [c.195]

    По стойкости к окислению эти масла примерно соответствуют углеводородным маслам. Стойкость к окислению может быть улучшена с помощью стабилизаторов (особенно ароматических аминов, например, фенил-а-нафтиламина). Однако эффективность действия этих антиокислителей в значительной мере зависит от температуры. При окислении пероксиды, по-видимому, образуются как промежуточные продукты реакции, которые катализируют гидролиз. Этим объясняется влияние антиоксидантов на гидролитическую стабильность силоксановых эфиров. Фактически гидролитическая стабильность очень низка она может быть улучшена путем применения спиртов с более длинными цепями или с более благоприятной структурой, чем у эфирных компонентов (стерическое затруднение). При разложении всегда образуется вода вследствие дегидратации ортокремниевой кислоты, поэтому невозможно предотвратить гидролиз с последующим гелеобразо-ванием. [c.156]

    Эта особенность структуры остова цеолита, в частности поверхности больших полостей синтетических фожазитов, определяет природу ее взаимодействия с молекулами разной электронной структуры. С этой точки зрения цеолиты относятся ко второму типу адсорбентов предложенной нами классификации химии поверхности твердых тел по трем типам [7], т. е. к адсорбентам, несущим на поверхности сосредоточенные положительные заряды (катионы малого радиуса, протонпзированные атомы водорода гидроксильных групп кислого характера), расположенные около рассредоточенных отрицательных зарядов (например, около больших, комплексных анионов). Во всех этих случаях молекулы, имеющие звенья с сосредоточенной на периферии электронной плотностью, например я-связи у азота, ненасыщенных и ароматических углеводородов и свободные электронные пары у атомов кислорода воды, спиртов, эфиров, кетонов или у атомов азота аммиака, аминов, пиридина и т. п., должны проявлять качественно сходное специфическое взаимодействие с центрами сосредоточения на поверхности адсорбента положительного заряда. Действительно, характер адсорбции перечисленных молекул на поверхности каналов цеолитов качественно сходен с таковым на поверхности сульфата бария [7] (сосредоточенный положительный заряд и рассредоточенный в комплексном анионе 804 отрицательный заряд) и, как мы увидим ниже, на поверхности кремнезема (или алюмосиликатного катализатора), несущей гидроксильные группы с частично протонизированным водородом [7, 8]. Вклады классических и квантовомеханических эффектов в энергию специфических взаимодействий количественно различаются, но качественно эти взаимодействия сходны. Водородная связь является их частным случаем. [c.14]

    Изучение химических реакций белков проливает свет на их структуру. Способность почти всех аминокислотных остатков в белке принимать участие в химических реакциях, аналогичных реакциям аминокислот, подтверждает общепринятую в настоящее время концепцию о том, что основной ковалентной связью в белках является пептидная связь. Однако наличие экранированных групп, обнаруживаемое нрй помстщг денатурации и химических реакций, заставляет предполагать, что некоторые фенольные, сульфгидрильные и др. группы либо образуют лабильные связи, которые могут разрываться при денатурации, либо остаются стерически недоступными для химических реагентов до тех пор, пока структура белка не будет изменена. Последнее объяснение окажется, пожалуй, более приемлемым, если в дальнейших исследованиях будет вскрыта зависимость реакционной способности групп от размера молекул реагента. Тот факт, что для проявления биологической активности существенно важное значение имеет лишь часть функциональных групп определенного вида, подчеркивает сложность топографии белков. Различие в скорости реакций амино- и фенольных групп в ряде белков указывает на индивидуальные особенности структуры белка. В настоящее время не может быть сделан обобщающий вывод о важности тех или иных функциональных групп белка для обеспечения биологической активности. Поэтому для того, чтобы иметь возможность сделать подробные заключения о природе ферментативной активности или вирусного действия, следует еще очень многое изучить. Например в таблице, составленной Олькоттом и Френкель-Конратом (см. последующие тома настоящего сборника), указывается, что фенольные [c.354]

    Курс органической химии характеризуется стройной структурой, взаимосвязью классов соединений углеводороды— спирты — альдегиды — кислоты — сложные эфиры — углеводы — амины — аг/инокислоты — белки. Это обстоятельство позволяет широко применять в системе самостоятельных работ учащ1 хся генетические связи между классами соединений (переход от менее сложного к более сложному и, наоборот, от слолсно о к простому), логические операции, особенно сравнения, снсто . а-тизация и обобщения. [c.153]

    Г от линейности (см. рис. 4). Вероятно, это связано с меньшей силой образуемых водородных связей по сравнению с суш ествуюш ими водородными связями в области амингидрат — вода и с особенностями структуро-образования в растворе амингидрат — амин. [c.185]

    Смоляные аниониты, так же как и катиониты, можно получать используя метод поликонденсации. Для реакции поликонденсации применяют фенилендиамип, мочевину, меламин, гуанидин, поли-этилепполиамин и т. п. соединения. Аминогруппа содержится в каждом из перечисленных соединений и изготовление сорбентов сводится к приданию этим соединениям прочности и нерастворимости, т. е. к превращению их в высокомолекулярные вещества сетчатой или пространственной структуры. Соединение молекул амина в сложную молекулу-гигант достигается действием на них формальдегида. В этом отношении изготовление анионита напоминает процесс получения фенолоформальдегидных смол. Однако необходимо учесть весьма важную особенность образования амино-формальдегидных смол, которая заключается в том, что ионогенные группы аминов принимают непосредственное участие в реакции смолообразования. [c.148]

    С-Алкилирование этилнитроацетата третичными основаниями Манниха не представляется возможным, если эти основания (например, диэтиламино-этилантипирин 98) из-за особенностей структуры не способны к отщеплениьо амина в этом случае образуется лишь соль основания с нитроэфиром. Реакция, однако, идет, если использовать иодметилат 98 [231, 260], так как образование четвертичной соли ослабляет связь между атомом азота и гетероциклом и получающийся разонансно-стабилизированный катион может диссоциировать [222] [уравнение (83)]. [c.98]

    Характерной особенностью структуры некоторых глинистых минералов (монтмориллонита, галлуазита) является то, что молекулы воды и ряд органических полярных молекул (спирты, амины) могут проникать между структурными слоями, вызывая их набухание [1—4]. В работе [3] указывается, что внутрикрн-сталлическая адсорбция обусловлена образованием водородной связи типа 510...НО или 510...МН. Кроме того, глинистые мине ралы могут сорбировать анионы и катионы, превращая их в обменные [5—8]. Органические ионы также могут вступать в реакцию ионного обмена с глинистыми минералами. Можно ожидать, что процесс адсорбции таких полярных реакциоснносноообных молекул адсорбата, как амины, на полярной поверхности природных сорбентов также может сопровождаться побочными явлениями набуханием и ионным обменом. [c.127]

    Окраска -оксиазокрасителей при добавлении щелочи углубляется, например переходит из оранжевой в красную, так как при этом фенол превращается в фенолят-ион. и неподеленная пара электронов атома кислорода с большой легкостью участвует в резонансе. о-Оксиазокра-сители, особенно производные -нафтола, обычно не способны образовывать соли по фенольной гидроксильной группе (или образуют их лишь в концентрированной щелочи) вследствие того, что в них имеются водородные мостики. Поэтому такие красители не меняют цвета иод действием щелочей. Аминоазосоединения в кислом растворе легко присоединяют протон, образуя катион красителя. В зависимости от того, вступает ли протон в амино- или в азогруппу, наблюдается, соответственно, повышение цвета (вследствие блокирования неподеленной пары электронов аминогруппы) или углубление цвета (благодаря образованию бензоидной структуры), В связи с этим многие окси- и аминоазокрасителн находят применение в качестве 1шдикаторов. [c.604]

    Как видно из рис. 50, введение аминов ОДА снижает наибольшую пластическую вязкость, а также статический предел текучести всех модельных систем. Это особенно ярко проявляется на моделях Ai и. Мз, имитирующих I и П1 тип дисперсной структуры. Для этих систем снижение вязкости и предела текучести наблюдается при введении малых количеств (0,3—0,5%) ОДА и далее продолжается во всем диапазоне исследуемых концентраций (до 2—2,5%). Следует отметить, что при введении около 1,5—2,0% ОДА предел текучести становится очень малым, что свидетельствует о практическом исчезновении твердообразных свойств системы. Для системы Мг (И тип дисперсной структуры) действие ОДА проявляется менее заметно и лишь при малых концентрациях добавки (0,5%). Дальнейшее увеличение ее количества практически не изменяет вязкости системы. Следовательно, при наличии коагуляционной структурной сетки из асфальтенов Му и М ) добавка, адсорбируясь на лиофоб-кых участках их поверхности с блокировкой контактов, способствует стабилизации системы. В моделях М2, где отсутствует коагуляционный каркас из асфальтенов, адсорбция добавки приводит к дезагрегации и исчезновению отдельных малочисленных образований из асфальтенов. Растворение ОДА в углеводородной среде приводит также к общей пластификации системы, сопровождающейся уменьшением числа асфальтенов в единице объема. Пластифицирующее воздействие на битумы различных структурных типов оказывает добавка высших карбоновых кислот — госсиполовая смола, снижающая пластическую вязкость и статический предел текучести. Пластифицирующий эффект увеличивается с повышением количества ПАВ в битуме, что наблюдается для всех модельных систем. Следует, однако, отметить, что в случае дисперсных структур М и Мз введение добавки ГС до 2% практически не изменяет значений пределов текучести, тогда как наибольшая пластическая вязкость при этом уменьшается. Это указывает на нарушение иространствен-ной сетки асфальтенов пластификатором без полного разрушения каркаса. Дальнейшее повышение концентрации ГС способствует превращению систем М] и ТИз в структурированную и далее истинную жидкость. [c.211]

    Вообще говоря, частоты колебаний v( = 0) зависят от того, в какой фазе и в каком растворителе находится вещество, и убывают в ио-следовательности паровая фаза > в гексане > в ССЦ ( Sa) > в H I3 (например, для СНзСОСбНз эти частоты соответственно равны 1709, 1697, 1692, 1683 см- ) частоты колебаний в H I3 могут оказаться примерно иа 10—20 см- ниже, чем в ССЦ. Частоты колебаний веществ в КВг и других матричных фазах зависят от структуры кристалла (это в особенности относится к амидам), а также от наличия водородной связи (у кислот, первичных и вторичных амидов, имидов, мочевины и се производных и т. д.). В этих случаях полосы поглощения часто смещаются к более низким v на величину 30—40 см- или более по сравнению с соответствующими значениями для разбавленных растворов в H I3- Для более концентрированных растворов частоты принимают промежуточные значения в пределах этого сдвига. В результате сопряжения частоты колебаний v( = 0) понижаются примерно на 30 см при сопряжении с одной связью С = С (или арильным циклом) и еще на 15 см" при сопряжении с двумя двойными связями дальнейшее сопряжение почти не приводит к сдвигам частот. В этих случаях интенсивность полосы колебания v( = ) повышается и эта полоса расширяется ио сравнению с соединениями, в которых отсутствует сопряжение. Водородная связь также понижает частоту v( = 0), как, например, в оксикетонах, р-дикето- (енольных) структурах, о-амино- илп [c.213]

    Отличит, особенность П. в р.- влияние природы р-рителя на мол. массу и структуру образующегося полимера. Известны примеры П. в р., когда р-ритель (пиридин, третичные амины, К,К-диметилацетамид, М-метилпирроли-дон и др.) связывает к-ту, образующуюся в р-ции, напр, при полиэтерификации или полиамидировании (т. наз. акцепторно-каталитич. поликонденсация). Р-ритель и содержащиеся в нем примеси, напр. Н2О, могут вызывать протекание побочных р-ций, приводящих к блокированию функц. групп. Особое место среди них занимает циклизация, [c.634]

    В действительности вопрос об истинном строении N-гликoзидa нужно решать отдельно в каждом индивидуальном случае, так как, по-видимому, в зависимости от структурных особенностей амина, а возможно и сахара, речь может идти об открытой (XXXIV) или циклической структуре (XXXV). В некоторых случаях таутомерное равновесие обычных форм [c.132]

    Так при изменении структуры белка (белковая изомерия), меняется соотношение высоко- и низкоспиновых форм Ре(Ш)ПП. Ядами пероксидаз являются многие соединения особенно СЫ", Н8 , Р". Существует множество механизмов действия пероксидаз, так как они окисляют амины, фенолы, их производные, многие неорганические соединения. Однако из спектральных и кинетических данных следует [2, 96, 106], что любой механизм будет включать образование пероксидного комплекса (-1ш")(НОО)РеПП, в котором в качестве экстралигандов [c.292]

    Умеренная термическая обработка вызывает денатурацию белков, изменяя их третичную структуру, и обычно оказывает благоприятный эффект на питательную ценность, повышая доступность для ферментов и одновременно инактивируя ингибиторы протеаз. Однако в присутствии редуцирующих сахаров некоторые незаменимые аминокислоты, особенно лизин, реагируют через свободные аминные группы боковой цепи с имеющимися карбонильными группами. Эти реакции описаны Мэйлардом и могут в первое время иметь обратимый характер, что приводит к образованию оснований Шиффа, неустойчивых, но доступных в смысле питательности. Эти соединения быстро превращаются в соединения Амадори, в которых свободные аминогруппы блокированы и которые обычно не усваиваются [22]. [c.587]

    Уже много десятилетий такое представление является общепринятым, по существу единственным. Оно, действительно, объясняет физические и химические свойства амидов и пептидных групп в сложных молекулах. Стабилизация электронного строения пептидной группы в виде суперпозиции форм I и II осуществляется за счет взаимодействия неподеленной пары электронов атома N с тс-электронами связи С=0. Модель Полинга подтверждается многочисленными данными рентгеноструктурного анализа, согласно которым длины связи N- в амидах и пептидах короче, чем в аминах, а длина связи С=0 больше, чем в альдегидах и кетонах, плоским строением пептидной группы, а также ее существованием в транс- и <мс-конфи-гурациях, разделенных высоким потенциальным барьером. Резонансная модель не противоречит колебательным и электронным спектрам ассоциированных амидов и пептидов. Так, понижение частоты валентного колебания С=0 (полоса амид I табл, 11,4) и повьш1ение частоты валентного колебания N- (полоса амид II) согласуется со снижением л-порядка первой связи и появлением л-порядка второй. Резонно также связывают гипсохромное смещение УФ-полос поглощения амидов с большим вкладом в распределение электронной плотности цвиттер-ионной формы. Осцилляцией между двумя альтернативными каноническими структурами I и II хорошо объясняется и главная особенность пептидной группы - лабильность ее электронного строения. [c.150]

    Полисахарйды микроорганизмов. Мир микроорганизмов особенно богат самыми разнообразными гетерополисахаридами, которые содержат широкий набор моносахаридов, в том числе амино- и дезоксисахара и более сложные по структуре моносахариды. Эти полисахариды, находясь в наружных слоях тела микроба, определяют его биологическую специфичность. Известно, например, что каждый тип пневмококков — возбудителей воспаления легких — содержит свой собственный специфический полисахарид. Так, один из этих полисахаридов состоит из остатков глюкозы и глюкуроновой кислоты, другой —из остатков галактозы и глюкоз-амина и т. д. [c.483]


Смотреть страницы где упоминается термин Особенности структуры аминов: [c.154]    [c.73]    [c.129]    [c.86]    [c.343]    [c.483]    [c.329]    [c.229]    [c.527]    [c.136]    [c.173]    [c.19]    [c.351]    [c.554]   
Смотреть главы в:

Основы органической химии. Ч.2 -> Особенности структуры аминов

Основы органической химии -> Особенности структуры аминов




ПОИСК







© 2024 chem21.info Реклама на сайте