Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт определение озолением

    В сочетании с кислотным озолением пробы используют также метод вращающегося электрода для определения малых примесей (Металлов в широком ассортименте нефтепродуктов— от реактивного топлива до асфальта [189], В стакан вместимостью 250 мл из термостойкого стекла вайкор вводят по 1 мл водного раствора буфера (1% калия) и внутреннего стандарта (0,02% кобальта) и выпаривают досуха. Затем берут навеску пробы. При анализе асфальта и остатков вакуумной перегонки озоляют 5—10 г пробы, вакуумного газойля и котельного топлива — 20—50 г, реактивного топлива и атмосферного газойля — 50—100 г. На каждые 20 г образца добавляют по каплям 5— 10 мл дымящей серной кислоты и смесь перемешивают. После прекращения дымления ее нагревают на плитке, повышая температуру до 510 °С в течение 12 ч. Затем стакан с обугленным остатком выдерживают 1в муфельной печи при 538 °С до полного сгорания угля (4—8 ч). Стакан извлекают из печи, охлаждают и золу растворяют в 1—2 мл царской водки. Жидкую часть испаряют и сухой остаток растворяют в 10 мл разбавленной хлороводородной кислоты (1 3). Полученный раствор анализируют методом вращающегося электрода. [c.189]


    Метод определения продуктов износа и компонентов присадок в свежих смазочных маслах, включающий озоление пробы с коллектором и анализ золы, заключается в следующем. В фарфоровом тигле к навеске пробы 10—20 г добавляют 100— 300 мг угольного порошка и пробу сжигают. Вязкие масла при этом подогревают на плитке. Остаток прокаливают 30 мин в муфельной печи при 550 °С и массу воды доводят угольным порошком до заданного значения (200—500 мг). При таком озолении проба обогащается в 20—100 раз. Полученную смесь растирают в агатовой ступке 5 мин. Затем к 100 мг пробы добавляют 25 мг смеси буфера и внутреннего стандарта (92,4% фторида лития +7,6% оксида кобальта) и растирают в ступке [c.209]

    Особенно сложно определение неорганических соединений в биологических материалах, поскольку обычно неизвестно, в какой форме они присутствуют летучей или нелетучей. С помощью радиоактивных изотопов установлено, что при озолении моллюсков даже при низких температурах теряются Мп, Со, 2п, Ни, Се и Ра (табл. 5.2). Результаты, полученные для пищевых продуктов одного вида, нельзя распространять на другие. В отличие от результатов озоления моллюсков (см. табл. 5.2), при озолении морских водорослей не обнаружено потерь кобальта и цинка [5.34]. Количество элемента, перешедшего в золу из образца, оценить трудно, поскольку радиоактивную метку вводят в пробу в виде неорганического соединения. Можно попытаться свести к минимуму погрешности анализа, если проводить озоление при предельно низкой температуре (450 °С) или применять вещества, способствующие озолению. Для получения надежных результатов" рекомендуется проводить сухое и мокрое озоление биологических материалов. [c.134]

    При определении кобальта в биологических материалах в ряде методик рекомендуют проводить озоление при 450—600 °С [5.34, 5.74, 5.118, 5.146, 5.205, 5.206, 5.208—5.215]. Как правило, анализируемые вещества нагревают без доба- [c.142]

    Для определения цинка, меди, серебра, кадмия, хрома и кобальта в сточных и природных водах необходимо проводить озоление. [c.95]

    В работе [1913] были изучены методы определения металлов в полимерах с использованием рентгенофлуоресцентной спектроскопии. Хотя авторы работы рассматривали анализ только полибутадиена, полиизопрена и сложных полиэфиров, эти методы применимы и к анализу полимеров другого типа, например полиолефинов. Было проведено определение хрома, марганца, железа, никеля, кобальта, меди и цинка. Образцы озо-ляли, золу растворяли в азотной кислоте, а затем проводили рентгенофлуоресцентный анализ. При этом не было необходимости в разделении элементов, поскольку при концентрациях до 10 МЛН они не мешают определению других металлов. Для того чтобы устранить взаимное влияние элементов и полимерной матрицы, авторы предпочли не проводить анализ твердого полимера, а растворить его. Использование для растворения азотной кислоты связано с тем, что в отличие от других минеральных кислот она не поглощает рентгенофлуоресцентного излучения анализируемых металлов. Как правило, расхождение между расчетными и экспериментальными значениями не превышало 10%. Наибольшая ошибка характерна для определения хрома. По данным ряда исследователей, результаты количественного определения будут намного завышены, если вместо сухого озоления проводить озоление с использованием серной кислоты [1917], элементной серы [1914], нитрата магния [1917, 1918], бензол- и ксилолсульфокислот [1915, 1916]. Как было установлено в работе [1913], преимущества сухого озоления связаны с тем, что процесс проводится достаточно медленно и при относительно низких температурах, не превышающих 550 °С. [c.373]


    В условиях, разработанных для осаждения галлия, были поставлены опыты по отделению его от марганца, никеля, кобальта и цинка. Определение двухвалентных металлов в осадках основных коричнокислых солей галлия было проведено такими же методами, как и в осадках индия, после осторожного озоления и прокалива- [c.37]

    Для разложения растений применяют два метода сухое озоление и кислотное сжигание (мокрое озоление) (с. 450 - 451). Описанный способ сухого озоления используют для определения железа, марганца, цинка, меди, кобальта, никеля, свинца, кадмия, хрома. После мокрого озоления кроме названных элементов возможно определение молибдена. При использовании фотометрических методов определения золу и остаток от мокрого сжигания проб обрабатывают 0,3 М раствором соляной кислоты. Золу в тигле осторожно смачивают 0,3 М соляной кислотой, затем приливают 5 см этого же раствора. Тигли помещают на водяную баню и нагревают в течение 30 мин. Полученный раствор переносят через воронку в градуированные пробирки объемом 20 м Тигель обмывают бидистиллированной водой и доводят ею раствор до метки. [c.454]

    Фотометрическое определение кобальта после экстракции 1-нитрозо-2-нафтолата четыреххлористым углеродом [1138]. Навеску почвы (или растительного материала) разлагают фтористоводородной кислотой после озоления. Затем окисляют двухвалентное железо 37о-ным раствором Н2О2 и осаждают его в виде фосфата из уксуснокислого раствора, содержащего мочевину. К фильтрату прибавляют щелочный раствор 1-нитрозо-2-нафтола и извлекают окрашенный комплекс кобальта четыреххлористым углеродом. Экстракты промывают последовательно концентрированной соляной кислотой, водой, смесью (1 1) этанола и 0,1 Л/ NaOH. Оптическую плотность объединенных экстрактов измеряют при 400 ммк. Содержание кобальта находят по калибровочному графику. Относительная ошибка определения 0,3—0,5- 10" % Со достигает 5%. [c.212]

    Для определения железа, хрома и меди в маслах и смазках с озолением пробы е качестве коллектора иопользуют оксид магния [289]. К оксиду магния добавляют равное количество смеси угольного порошка с внутренним стандартом (угольный порошок-f-0,35% кобальта в форме оксида) и тщательно растирают. Эталоны готовят из оксидов определяемых элементов на основе смеси коллектора с внутренним стандартом. Концентрация металлов в эталонах 0,001—1,0%. В навеску пробы вводят смесь коллектора с внутренним станда,ртом (10 1) и нагревают на электроплитке до полного испарения масла. Затем сухой остаток прокаливают в муфельной цечи 1 ч яри 550 °С и золу растирают в агатовой ступке. В канал (диаметром 2,5 мм и глубиной 5 мм) электрода вводят 25 мг цорошка и анализируют в дуге переменного тока силой 6 А. Аналитический промежуток 2 мм, экспозиция 30 с, ширина щели спектрографа ИСП-28 равна 35 мкм. Использованы следующие аналитические линии Fe 259,96/Со 258,72 Сг 313,20/Со 326,08 Си 324,75/фон. При озолении масла с оксидом магния обнаружено меди на 10—20% больше, чем при прямом озолении без коллектора. Относительная ошибка метода 7%. [c.188]

    В другой работе [291Гописан метод определения ванадия в нефти и нефтепродуктах с применением хроматографического силикагеля в качестве катализатора озоления пробы. Для этого 150 г силикагеля с зернами максимального размера 0,08 мм сушат в течение 5 ч при 200 °С в фарфоровой чашке и заливают дистиллированной водой так, чтобы над силикагелем был слой воды толЩ,ииой 1 мм. Затем в чашку наливают 375 мл водного раствора азотнокислого кобальта (внутренний стандарт), содержащего 0,04% кобальта. Воду выпаривают при постоянном перемешивании на водяной бане. После этого еще 2 раза силикагель заливают водой и выпаривают ее. Высушенный и растертый катализатор тщательно перемешивают в банке встряхиванием. Аналогичным способом к силикагелю добавляют различное количество водного раствора ванадата аммония (0,01% ванадия) и получают серию эталонов с содержанием ванадия 0,025—0,8%. [c.162]

    Значительно реЖе Для определения примесей в нефти исполь зуется радиохимический вариант нейтронно-активационного анализа [4, 25, 395—398]. Патек и Билдстейн [395] предлагают радиохимическую методику, включающую обычное сухое озоление нефти, растворение сухого остатка в 8 н. соляной кислоте, экстракцию из 8 н. НС1 изопропиловым эфиром железа и сурьмы, осаждение селена аскорбиновой кислотой, из среды 0,1 н. азотной кислоты осаждение серебра в виде хлорида серебра, измерение хрома в 2 н. соляной кислоте и дальнейшее разделение скандия, кобальта и цинка на смоле Дауэкс 1X8- Химический выход определяемых элементов составлял от 83 до 94%. Схема анализа опробована только на искусственных смесях элементов. [c.115]


    После окончания исследования по количественному осаждению урана и установления для этого оптимальных условий мы перешли к изучению отделения таким путем урана от марганца, никеля, кобальта и цинка, дающих, как было установлено нами, растворимые соединения с коричнокислым аммонием. Определение металлов, переходящих при этом в фильтрат, мы не проводили, а для контроля полноты разделения определяли их количество, остающееся в осадках урановой ооли. Для этого отфильтрованные и промытые осадки слабо прокаливали для озоления фильтра. Для определения марганца и кобальта полученную UsOs растворяли при нагревании в небольшом количестве HNO3, марганец определяли колориметрически с персульфатом аммония, кобальт — с нитрозо-Р-солью. [c.52]

    В большинстве методов в качестве реагента пригодна нитрозо-К-соль и в некоторых — о-нитрозокрезол В настоящее время, когда экстракционные методы определения кобальта с применением нитрозонафтола хорошо разработаны, по-видимому, старые методы определения кобальта в биологических материалах можно упростить и улучшить. Нет видимой причины, не позволяющей применять метод с использованием 2-нитрозо-1-нафтола (стр. 376), особенно (как уже было описано выше) после разрушения органических веществ методом сухого или мокрого озоления. Однако вследствие того, что подобные данные по существу отсутствуют, рассмотрен приводимый ниже метод (как один из известных), при использовании которого можно получить надежные результаты при определении кобальта в биологических материалах, включая и такие трудно анализируемые образцы, как кости. [c.386]

    Определению кобальта с нитрозо-К-солью в водном растворе мешает большее число элементов, чем при экстракции аналогичных хелатов кобальта с реагентами, не содержащими сульфогрупп, потому что экстракция в этом случае является дополнительной операцией разделения. Определению кобальта с нитрозо-К-солью мешают следующие ионы металлов Се , Сг , r i, Си, Fe , Fe , Ni, и Для устранения их влияния имеется несколько способов Fe можно экстрагировать из концентрированного солянокислого раствора метилизобутилке-топом [901], диэтиловым [1116] или диизопропиловым эфиром [769]. При точном определении кобальта не следует использовать часто рекомендуемый метод отделения железа соосаждением с ZnO [796], так как в этом случае кобальт теряется за счет окклюзии и сорбции осадком. Большие количества хрома и никеля лучше всего отделять при помощи ионообменных смол [505, 901, 2290]. Медь можно эктрагиро-вать при рН = 2,5 дитизоном, Fe (и Си)—при рН = 2,5 раствором 8-оксихинолина в хлороформе. Наконец, можно отделить кобальт от остальных сопутствующих элементов экстракцией диэтилдитиокарбамината кобальта [1660]. Не очень большие количества Си, Сг, Ni и Fe отделяют от хелата кобальта иа колонке с AI2O3, обработанной хлорной кислотой [206, 505, 1009]. Все эти методы относительно сложны. Гораздо проще маскировать мешающие элементы большим избытком фторида. Это удается сделать, если предварительно окислить и бромной водой и избыток брома удалить перед добавлением реагента кипячением [1599, 1978, 1979, 2387]. При определении кобальта в биологических объектах необходимо, однако, предварительно концентрировать кобальт пз озолеиион пробы при помощи экстракционных методов. При этом можно отделить кобальт от большинства сопутствующих веществ. Например, можно экстрагировать кобальт в присутствии цитрата при pH = 8—9 раствором дитизона в четыреххлористом углероде [59, 727, 1344, 1434] или раствором 2-нитрозонафтола-1 в хлороформе [1533, 1546] и после озоления экстрактов определять кобальт с нитрозо-К-солью. Разработаны методы определения кобальта с нитрозо-К-солью в различных технических продуктах, например медной руде [2427], алюминиевых сплавах [2101], никеле [72, 1247], цирконии [2290, 2387], цементе [827]. [c.318]

    За последние годы появилось много работ по определению металлов, как нормально входящих в состав пищевых продуктов, так и присутствующих в виде примесей мышьяка [174, сурьмы [170], висмута [137], бора [17, 101,261], кадмия [56], кобальта [16], свинца [58, 149], ртути [57], селена [163], олова [108] иурана[205]. Недавно опубликованы методы определения в пищевых продуктах солей фтористоводородной кислоты [156, 292] и иода [264]. Определение фторидов основано на перегонке в присутствии серной кислоты, нейтрализации дестиллята, выпариваний и озолении остатка. Далее золу обрабатывают хлорной кислотой и сульфатом серебра и снова подвергают перегонке. Ион фтора определяют в отгоне, добавляя избыток раствора нитрата тория и оттитровывая последний раствором фторида в присутствии ализаринового красного. [c.177]


Смотреть страницы где упоминается термин Кобальт определение озолением: [c.142]    [c.83]    [c.44]    [c.10]    [c.163]    [c.17]    [c.46]    [c.67]   
Методы разложения в аналитической химии (1984) -- [ c.142 ]




ПОИСК





Смотрите так же термины и статьи:

Кобальт определение

Озоление



© 2025 chem21.info Реклама на сайте