Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фтор-ион от металлов

    Электрохимические методы получения простых веществ. Процессы электрохимического окисления и восстановления осуществляются на электродах при электролизе расплавов или растворов соединений. Электрохимическим (анодным) окислением получают фтор, хлор и кислород. Электрохимическим (катодным) восстановлением расплавов соответствующих соединений получают щелочные и щелочноземельные металлы, алюминий и некоторые другие. [c.245]


    С фтором практически не реагируют или реагируют весьма незначительно инертные газы, фториды тяжелых металлов, фторопласты, а также висмут, цинк, олово, свинец, золото и платина. Медь, хром, марганец, никель, алюминий, нержавеющая сталь при отсутствии воды практически стойки в контакте с фтором вследствие образования на их поверхности прочной защитной пленки соответствующего фторида. [c.128]

    Новый этап начался в 1949 г., когда был разработан процесс каталитического риформинга с широким применением бифункциональных катализаторов. Это послужило толчком для разработки процессов изомеризации парафиновых углеводородов при давлении водорода в паровой фазе, температурах 350-500 °С на окисных, сульфидных катализаторах и металлах VIH группы, нанесенных на носители, обладающие кислотными свойствами — оксид алюминия, промотированный фтором, и алюмосиликаты [5—9]. [c.5]

    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]


    Аппараты и коммуникации для работы со фтором обычно изготавливают из меди или никеля. Никель - наиболее стойкий по отношению к фтору металл (он покрывается очень прочной пленкой фторида, предотвращающей дальнейшее взаимодействие). [c.457]

    Фтор энергично реагирует со всеми металлами и металлоидами йод, сера, фосфор загораются в атмосфере фтора. Металлы (даже золото и платина) реагируют со фтором, причем образуются фториды этих металлов. [c.521]

    Важность окислительного числа прежде всего заключается в том, что номер группы Периодической системы указывает на высш)то положительную степень окисления (характеристическая степень окисления), которую могут иметь элементы данной группы в своих соединениях. Исключение составляют металлы подгруппы меди, кислород, фтор, металлы семейства железа и некоторые другие элементы VHI группы. Кроме того, понятие степени окисления полезно при классификации химических соединений, а также при составлении уравнений окислительно-восстановительных реакций. Кривая изменения максимальной положительной степени окисления имеет периодический характер в зависимости от порядкового номера элемента (рис. 23). При этом в пределах каждого большого периода эта зависимость представляется сложной и своеобразной. [c.55]

    Технология фторирования. В промышленности существуют следующие процессы фторирования свободным фтором, металло-фторидное, электрохимическое и фторводородом. [c.447]

    Книга представляет собой учебник по технологии электрохимических производств для студентов химико-технологических техникумов. В ней изложены основы электролиза воды, производства хлора и едкого натра, кислородных соединений хлора, надсерной кислоты и ее солей, перманганата калия, двуокиси марганца, фтора, металлов натрия и калия, тройного сплава. По каждому процессу описаны теоретические основы, технология и аппаратура. [c.2]

    По химическим свойствам это активнейший металл. На воздухе тотчас окисляется, образуя рыхлые продукты окисления. При обычной температуре самовоспламеняется в атмосфере фтора и хлора. При небольшом подогревании энергично взаимодействует с жидким бромом, серой, иодом, водородом и др. [c.488]

Таблица 2 Коррозия газообразным фтором металлов и сплавов при атмосферном давлении [434] Таблица 2 Коррозия <a href="/info/1860367">газообразным фтором</a> металлов и сплавов при атмосферном давлении [434]
    Фторирование углеводородов осуществлялось несколькими путями. Их можно классифицировать следующим образом а) реакция с элементарным фтором б) реакция с фторидом металла в) электролиз в безводном фтористом водороде г) реакция с хлором (или бромом) с последующим обменом галоида в результате взаимодействия с неорганическим фторидом или фтористым водородом. [c.68]

    Химические свойства простых веществ. В химических реакциях металлы обычно выступают как восстановители. Неметаллы, кроме фтора, могут проявлять как окислительные, так и восстановительные свойства. При этом характер изменения восстановительной и окислительной активности простых веществ в группах и подгруппах су-щест венно зависит от природы партнера по реакции и условий осуществ-ленпя реакции. Обычно в главных подгруппах проявляется общая тенденция с увеличением порядкового номера элемента окислительные свойства неметаллов ослабевают, а восстановительные свойства металлов усиливаются. Об этом, в частности, свидетельствует характер изменения стандартной энергии Гиббса образования однотипных соединений. Например, в реакции окисления хлором металлов главной подгруппы И группы [c.237]

    При других партнерах по реакции и условиях ее протекания ряд изменения химической активности простых веществ может быть иным. Так, из щелочных металлов по отношению к фтору (а также кислороду) наиболее активен литий  [c.237]

    В атмосфере фтора и хлора эти металлы самовоспламеняются при обычных условиях. Взаимодействие их с жидким бромом сопровождается сильным взрывом. При нагревании они легко взаимодействуют с серой, водородом и другими неметаллами. С металлами образуют большей частью интерметаллические соединения. [c.491]

    Фторирование фторидами металлов. Реакция фторида металла с углеводородом, сопровождающаяся образованием фторированного парафина, является удобным методом замещения атома водорода фтором. Реакция эта, несмотря на то, что она экзотермическая,. в противоположность реакции с фтором гораздо легче контролируется и в значительно меньшей степени сопровождается разрывом углерод-углеродной связи. Кроме того, образование полимерных веществ минимально, следовательно, получаются соответственно более высокие выходы желаемых продуктов. [c.71]


    Полностью фторированные углеводороды вступают лишь в несколько реакций из тех, которые претерпевают галоидалкилы. Активные металлы, как натрий или калий [31], реагируют при 300—400°, вызывая полный распад вещества, тогда как натрий в жидком аммиаке реагирует медленно уже при комнатной температуре [25]. Хлористый алюминий вызывает деструкцию и замещение фтора, тогда как водород, хлор или бром дают продукты с более короткой цепью ири 700—900° [22]. Сам фтор реагирует при более низких температурах, давая в качестве основного продукта F4 [14J. [c.76]

    На алюмоплатиновом катализаторе, промотированном фтором, реакция изомеризации парафиновых углеводородов не происходит в отсутствие водорода если катализатор модифицирован хлором, реакция в начальный период протекает и в отсутствие водорода (то же явление имеет место и на фторидах металлов V и VI групп, активированных фтороводородом), но с течением времени ее скорость постепенно уменьшается. [c.35]

    Процессы высокотемпературной изомеризации пентан-гексановых фракций, осуществляемые при 350-420 °С, получили распространение, начиная с 50-х гг. [7-9, 19, с. 82-100]. В качестве катализаторов использовались бифункциональные катализаторы металл — оксид алюминия,, промотированный фтором, и металл — алюмосиликаты. Достигаемая глубина изомеризации н-пентана за проход составляет 50—55%, октановое число изомеризата пентан-гексановой фракции 75 (ИМ) в чистом виде. [c.81]

    Платиновые металлы чрезвычайно устойчивы против коррозии. Они ке растворяются в кислотах и только палладий и платина растворимы В царской водке и в концентрированных горячих HNOз а Н2504. Все металлы семейства платиновых имеют высокое положительное значение окислительно-восстановительного потенциала. Несмотря на это, многие из металлов характеризуются заметно выраженным сродством к кислороду. При нагревании рутений, осмий, родий и иридий соединяются с кислородом. Осмий в раздробленном состоянии медленно реагирует с кислородом при обычной температуре, образуя при этом бесцветный 0з04 палладий вступает в реакцию с трудом, а платина с кислородом не взаимодействует. Все платиновые металлы при нагревании соединяются с фтором и хлором, кроме родия, который устойчив к действию даже фтора. Металлы семейства легко выделяются в мелко раздробленном состоянии из растворов их солей при действии восстановителей. При этом они приобретают высокую активность в качестве катализаторов реакций окисления и гидрирования, особенно порошки палладия и платины, растворяющие значительные количества водорода в атомной форме. В соединениях элементы семейства платины встречаются в различных состояниях окисления. При этом максимальная и характерная валентность (выделена полужирным [c.375]

    Для измерения давления применяют пружинные манометры, манова-куумметры и вакуумметры общего и специального назначения [93]. Давление в коммуникациях сжатого фтора измеряют пружинными манометрами, оборудованными разделительными устройствами, или манометрами с геликоидальной пружиной из стойких к фтору металлов. [c.125]

    Колебания связей металлов с хлором, бромом и иодом находятся в основном ниже 500 см . Поскольку фтор, самый легкий из атомов галогенов, образует с металлами наиболее прочные связи, валентные колебания связей фтор — металл имеют обычно частоты выше 400 см . Таблицы частот колебаний связей металлов с галогенами могут быть найдены в монографиях Накамото (1966) и Адамса (1967) кроме того, этому вопросу посвящены два обзора Кларка (1965а, 1967). В данном разделе рассмотрено влияние различных факторов на характер колебания связей металл — галоген. Отметим еще раз, что к корреляциям, установленным только на основе колебательных частот, следует относиться с осторожностью даже если определены силовые постоянные системы, необходимо учитывать те упрощающие предположения, которые были сделаны при выборе модели силового поля. [c.132]

    В этом разделе мы также будем различать два типа реакций реакции, в которых фторированное юроизводное является пассивным компонентом, реагирующим с обычным, не содержащим фтора, металло рганическим соединением, и реакции, в кото рых принимают участие металлорганические соединения, полученные из фторпроизводных. Эта вторая группа реакций, которые удалось осуществить только в течение нескольких последних лет, является особенно интересной в тех случаях, когда исходными веществами при шолучении металлорганических соединений служат перфторпроизводные. Эти реакции знаменуют собой значительное расширение числа методов, пригодных для введения перфторалкилов в органические соединения. [c.187]

    Синтез диоксигенильных солей можно осуществлять нагреванием в автоклаве (в течение 10—20 ч) при 150—500°С смеси кислорода, фтора и порошка соответствующего металла  [c.319]

    При iTOM выделяется аморфный бор, который перекристаллизацией в расг лавленных металлах можно перевести в кристаллическое состояние. Однако этот метод дает продукт, загрязненный примесями. Более чистый бор (99,5%) получается электролизом расплавленных фторо-борат1)в. Наиболее чистый бор получают термическим разложением паров бромида бора на раскаленной (1000—1200°С) танталовой проволоке в присутствии водорода  [c.437]

    При нагревании металлы окисляются кислородом до ЭгОд, фтором — до ЭР5, При высокой температуре они реагируют также с хлором, азотом, углеродом и др. [c.540]

    Соединения Rh (VI) и 1г (VI). Степень окисления +6 проявляется у иридия и родия в гексафторидах ЭРд. Это легкоплавкие твердые вещества, RhFe (т. пл. 70° С) красно-коричневого, а IrFg (т. пл. 44°С, т. кип. 53°С) желтого цвета. Получают их сжиганием металлов в атмосфере фтора. [c.605]

    Фторирование в паровой фазе. Реакция углеводородов с фто[)ом в паровой фазе обстоятельно изучена в США Биджелоу, Кэди и сотрудниками [3,8]. Применявшаяся ими аппаратура в большинстве случаев состояла из вертикальной трубы (латунной, стальной, никелевой или из монель-металла), заполненной металлической насадкой, с соответствующим образом оформленными входом и выходом. Насадка мон ет быть в виде сетки, проволоки, стружки, лепты или дроби и может быть покрыта промотирующим металлом. Важно, чтобы насадка была однородной и не имела больших пустот в массе. По-видимому, насадка служит, во-первых, средством отвода тепла реакции через стенки реактора и, во-вторых, реакционной поверхностью. Фтор, обычно разбавленный азотом, и углеводород вводятся в реактор или одновременно в виде одного потока, или противотоком, а продукты собираются в охлаждаемых приемниках. От непрореагировавшего фтора можно освободиться промыванием раствором щелочи. [c.69]

    Фториды металлов из приведенной выше группы также применимы в реакциях с хлорпарафинами. В этом случае фтор замещает как хлор, так и водород, причем продуктами реакции являются фторпарафины. На практике более применимы в качестве исходных веществ хлорфторпара-фины, так как они более стабильные реагирующие вещества, чем сам углеводород [23], [c.71]

    Механизм реакции фторидов металлов, несомненно, отличается по своей природе от механизма, по которому реагирует один фтор. Например, для oFg можпо таким образом изобразить последовательность реакции  [c.71]

    Механизм реакции не вполне ясен. Реакция протекает на поверхности анода и, по-видимому, включает стадию образования переходного состояния, в котором органическая молекула присоединена к поверхности анода в окисленном состоянии. Поскольку применяется потенциал ниже того, который необходим для образования фтора, возможно, что в процессе реакции образуется в качестве промежуточного соединения активный фторид металла, который и является фторирующим агентом. Дальнейшим доказательством в пользу этого предположения является наблюдение, что идущий в некоторой степени крекинг углеродной цепи аналогичен крекингу при применении СоГ или АдГа при значительно более высоких температурах. [c.73]

    Применимость этого реагента ограничена, так как он неэффективен при замещении единственного атома галоида при атоме углерода или при замещении винильного галоида. В таких случаях реакция или вообще не идет, или наблюдается значительное разложение. Разложение, по-видимому, происходит вследствие характерной нестабильности группировки с частично галоидированным атомом углерода в присутствии соли металла при повышенных температурах. Эффективность фторидов сурьмы существенно увеличивается, если применять их в форме соединений пятивалентной сурьмы. Последние можно получить смешением трехфтористой сурьмы с ЗЬС15, Вг2 или С12 или превращением трехфтористой сурьмы в пятихлористую при помощи реакции с фтором. Во всех этих случаях получается более энергичный фторирующий агент, приводящий к более интенсивному замещению галоида фтором. Поскольку легкость фторирования фторидами сурьмы зависит как от выбора фторида, так и от природы применяемого галоидалкила, трудно точно предсказать степень фторирования, которую можно ожидать в том или ином случае. [c.74]

    Циклопропан можно фторировать с помощью реакции с безводным фтористым водородом при комнатной или более низкой температуре, при этом получается к-пропплфторид с выходом 80% [15]. При более низких температурах основным продуктом реакции является производное изопропила. Реакция циклопропана с самим фтором или с фторидами металлов ведет к образованию продуктов деструкции, при этом не удается выделить пи одного из фторциклопронапов. Фторированрхе циклобутана почти ие исследовалось. [c.75]

    Процессы изомеризации парафиновых углеводородов можно разделить в зависимости от используемых катализаторов осуществляемые на хлориде алюминия, на алюмоплатиновых катализаторах, промотиро-ванных фтором и хлором, на металлцеолитсодержаших катализаторах, на фторидах металлов V и VI групп периодической системы. [c.3]

    За неоном идет натрий — одновалентный металл, похожий на литий. С ним как бы вновь возвращаемся к уже рассмотренному ряду. Действительно, за натрием следует магний — аналог бериллия потом алюминий, хотя и металл, а не неметалл, как бор, но тоже т )схвалентный, обнаруживающий некото1)ые неметаллические свойства. После него идут кремний — четырехвалентный неметалл, во многих отношениях сходный с углеродом пятивалентный фосфор, по химическим свойс1вам похожий на азот сера — элемент с резко выраженными неметаллическими свойствами хлор — очень энергичный неметалл, принадлежащий к той же группе галогенов, что и фтор, и, наконец, опять благородный газ аргон. [c.49]


Смотреть страницы где упоминается термин Фтор-ион от металлов: [c.418]    [c.29]    [c.29]    [c.29]    [c.435]    [c.480]    [c.389]    [c.173]    [c.287]    [c.199]    [c.30]   
Ионообменные разделения в аналитической химии (1966) -- [ c.247 ]




ПОИСК







© 2025 chem21.info Реклама на сайте