Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексы переходных металлов окисление

    На примере этого ряда комплексов можно показать, как связаны окраска и строение координационных соединений переходных металлов. Фотоны надлежащей энергии способны возбуждать электроны, перенося их с атомов кислородных лигандов на пустые -орбитали иона металла. Этот процесс называется переносом заряда, и именно он в большинстве случаев обусловливает окраску комплексов переходных металлов. Чем выше степень окисления металла, тем легче осуществляют указанный переход электроны и тем ниже энергия, необходимая для их переноса. Поглощение фотонов соответствующей энергии в комплексе УО приходится на ультрафиолетовую часть спектра, поэтому ион УО бесцветен. В комплексе СгО поглощение фотонов происходит в фиолетовой области видимого спектра, что соответствует волновым числам около 24 ООО см поэтому растворы хромат-ионов имеют желтую окраску (дополнительные цвета указаны в табл. 20-3). (В спектроскопии принято выражать энергию фотонов в волновых числах, которые измеряпотся в обратных сантиметрах, см см. разд. 8-2.) Ион Мп + имеет самую высокую степень окисления и при возбуждении с переносом заряда поглощает зеленый цвет (приблизительно при 19000см ), этим и объясняется пурпурная окраска иона МпО ". Окраска комплексов, в которых происходят электронные переходы с переносом заряда, обычно очень интенсивна, что указывает на сильное поглощение света. Повышение размера центрального атома затрудняет перенос заряда и сдвигает поглощение в ультрафиолетовую область поэтому комплексы МоО , WOr и КеО бесцветны. [c.215]


    Комплексы переходных металлов. Лиганды. Геометрические изомеры. Октаэдрическая структура, плоская квадратная структура и тетраэдрическая структура. Парамагнетизм и диамагнетизм. Лабильность и инертность. Взаимосвязь степени окисления центрального атома и структуры комплекса. Влияние числа /-электронов металла на структуру комплекса. Перенос заряда. [c.204]

    Разработаны новые окислительные системы на основе пероксида водорода и комплексов переходных металлов (ванадия, молибдена, вольфрама), активные в окислении сернистых соединений. Синтезированы новые ванадиевые анионные пероксокомплексы с различными азотсодержащими гетероциклическими лигандами (пиридин, бипиридин, пиразин др.). Изучение состава и строения полученных пероксокомплексов проводили методами элементного анализа, ИК- и ЯМР-спектроскопии, а также рентгеноструктурного анализа [c.61]

    Типичные К. при гетерогенном катализе окисл.-восстановит. р-ций (окисления и восстановления, гидрирования и дегидрирования, разложения нестойких кислородсодержащих соед. и др.) — переходные металлы, их соед. и др. в-ва, способные отдавать и принимать электроны при взаимод. с реагентами (см., напр.. Палладиевые катализаторы, Ванадиевые катализаторы). В гомогенном катализе аналогичные р-ции протекают с участием комплексов переходных металлов (см. Комплексные катализаторы). Их каталитич. св-ва объясняются склонностью к образованию координац. связи с реагентами. Высокоактивные К. в кислотно-основных р-циях (крекинга, гидратации и дегидратации, гидролиза, нек-рых р-цйй полимеризации и изомеризации) — твердые и жидкие в-ва, способные отщеплять или присоединять протон при взаимод. с реагентами. При катализе апротонными к-тами взаимод. осуществляется через своб. пару электронов реагента (см. Кислотные катализаторы, Основные катализаторы). [c.248]

    А. к.-промежут. соединения во мн. р-циях непредельных соединений, к-рые идут в присут. комплексов переходных металлов, напр, карбонилировании, изомеризации, гидрировании, окислении, олиго- и полимеризации. Важная роль А.к. в этих процессах обусловлена их способностью легко вступать в р-ции с СО, олефинами, ацетиленами и др. ненасыщенными соединениями. Такие р-ции внедрения по связи металл - лиганд через промежут. а-аллильные производные часто являются ключевыми в каталитич. процессах. [c.104]

    Усоверщенствованная модель ТКП, в которой электростатическое взаимодействие дополнено идеей перекрывания орбиталей, называется теорией поля лигандов (ТПЛ). Она с успехом применяется к большому числу комплексов переходных металлов в обычных степенях окисления, где величины перекрываний электронных облаков не слишком велики. В тех же комплексах, где перекрывание существенно, методы ТКП и ТПЛ непригодны. Для описания подобных комплексов надо пользоваться ММО. [c.169]


    Окись углерода входит в большое число различных комплексов переходных металлов (разд. П.1.В) и стабилизует низшие степени окисления этих металлов. Карбонилы металлов образуются либо путем прямого воздействия СО на мелкодисперсные металлы  [c.193]

    Некоторые ионы и. комплексы переходных металлов (Си, Ре, Мп, V и Со) часто выступают в качестве обратимых переносчиков молекулярного кислорода, т. е. служат катализаторами окисления. При этом молекулярный кислород и ионы металла соединяются в комплексы, строение которых пока точно не выяснено. Наиболее вероятно образование комплексов следующего типа  [c.478]

    В присутствии солей и комплексов переходных металлов окисление алканов с образованием карбоновых кислот проводят в промышленном масштабе. В качестве катализатора применяют соли Мп(У1) и Со(Ш). [c.163]

    Окислительное присоединение - это реакция, в которой пр взаимодействии комплекса переходного металла с реагентом происходит увеличение степени окисления и координационного числа центрального атома на две единицы  [c.550]

    По мере развития наших представлений об углеводородных комплексах переходных металлов, окись углерода почти полно-стью утратила свое уникальное положение в качестве лиганда этих элементов. Теперь она может занять одно из мест среди других ненасыщенных производных углерода, и поэтому карбонилы металлов с полным основанием могут быть включены Б сборник статей, посвященных металлоорганическим соединениям. Наиболее характерная особенность окиси углерода — ее тенденция к образованию устойчивых комплексов только с переходными металлами в самой низшей степени окисления — присуща в различной степени также и углеводородным лигандам, а также фосфинам, арсинам и др. Это, очевидно, связано как с относительно электроположительной природой донорного атома в этих лигандах, так и с возможностью частичного перекрывания и-орбит лиганда и соответствующих с/-орбит металла. Высоко электроотрицательные доноры, например фтор, ведут себя иначе, образуя соединения с переходными металлами в их наивысшей степени окисления. [c.538]

    Экспериментальный метод определения полных зарядов на атомах в молекуле дает РФ-спектроскопия (см. разд. 5.4). Обнаружено [8], что потенциалы ионизации внутренних оболочек в атомах молекул, образованных легкими элементами (например, углеродом), линейно коррелируют с рассчитанными полными зарядами на атомах. Для комплексов переходных металлов, как следует нз рис. 6.13, корреляция между потенциалами ионизации и формальным состоянием окисления, вообще говоря, плохая. Разброс значений потенциалов ионизации для данного состояния окисления может превышать разность средних значений при переходе от одного состояния окисления к другому. Хотя сам процесс сопоставления с суммарными зарядами на атомах переходных металлов содержит определенную долю произвола, существует общее согласие в том, что формальное состояние окисления не является надежной мерой полного заряда атома. [c.129]

    Комплексы переходных металлов ныне широко используются в каталитических процессах окисления олефинов, изомеризации бутена-1 в бутен-2, лабораторного синтеза ароматических аминов из углеводородов и молекулярного азота и т. д. [c.90]

    Электростатическая теория очень наглядна, и потому для качественных выводов ею широко пользуются и теперь. Однако она не в состоянии объяснить целый ряд фактов 1) почему существуют комплексы с неполярными лигандами и комплексообразователем в нулевой степени окисления, например [Ре(С0)5], [Са(ЫНз)е] и др. 2) почему комплексы переходных металлов второго и третьего рядов характеризуются большей устойчивостью по сравнению с комплексами переходных металлов первого ряда. При одинаковом заряде размеры ионов второго и третьего рядов переходных металлов больше, чем у первого, и поэтому по электростатическим представлениям комплексы тяжелых металлов должны были быть менее устойчивыми 3) чем обусловлены магнитные и оптические свойства комплексных соединений. [c.161]

    До сих пор, чтобы как можно меньше усложнять картину, обсуждение ограничивалось процессами, в которых от восстановителя к окислителю переносился один электрон. Большинство рассматриваемых примеров затрагивало комплексы переходных металлов, устойчивые степени окисления которых отличаются на единицу. Однако элементы Р-блока и даже переходные элементы в ковалентных соединениях обычно не образуют стабильных соединений с нечетным числом электронов, и устойчивые степени окисления отличаются на две единицы, как, например, 5п(11), 5п(1У) Т1(1) и Т1(1П) Р(1П) и Р(У). Поэтому закономерен вопрос может ли за один акт окисления-восстановления переноситься больше одного электрона Если реакция идет по внешнесферному механизму, ограничение Франка—Кондона (соответствие энергий окислителя и восстановителя до переноса электронов) будет намного более серьезным, когда дело касается переноса двух электронов и более высокие значения энергий активации и меньшая вероятность успешного окислительно-восстановительного столкновения приведут к тому, что процесс этот станет маловероятным. Если реакция идет в растворе, ограничения могут быть, по-видимому, смягчены по той причине, что реагенты могут находиться в тесном соприкосновении друг с другом (в сольватационной ловушке ) достаточно долго, для того чтобы участвовать в двух последовательных актах переноса электронов. Если реагирующие промежуточные соединения не живут столь долгое время, чтобы их можно было обнаружить, этот тип процесса, вероятно, нельзя будет по-настоящему отличить от синхронного переноса двух электронов. В реакции, протекающей по внутрисферному механизму, мостиковая связь может сохраняться достаточно долго, и поэтому возможен последовательный перенос более чем одного электрона. В принципе возможно [c.209]


    Окисление алканов в присугствии комплексов переходных металлов ведет к образованию карбоновых кислот даже при комнатной температуре  [c.22]

    В. Окисление супврокоид-анионом. Супероксид-анион 0 , однозлектронно восстановленная форма (кислорода, обнаружен на поверхности различных ка тализаторов окисления. Кроме того, он является активной частицей в биохимических окислительных процессах, ускоряемых оксигеьазой и оксидазой. Эти ферменты, содержащие металлы, такие, как Си, Ъп, Мп и Ге, как известно, способсгауют диспропорционированию аниона 0 До молекулярного кислорода и пероксида водорода [ 46]. Изучение механизма взаимодействия О с комплексами переходных металлов необходимо для понимания принципа действия таких супероксиддисмутаз. [c.214]

    Процессы, катализируемые комплексами переходных металлов. Реакции оксида углерода, катализируемые карбонилами переходных металлов в присутствии различных промоторов, близки к рассмотренным выше процессам оксосинтеза. Из них производство акриловой кислоты и ее эфиров потеряло практическое значение ввиду использования дорогостоящего ацетилена и наличия более экономичного способа окисления пропилена (глава 6). [c.525]

    В последние годы достигнуты большие успехи в области химии п-аллильных комплексов переходных металлов. Показано, что эти комплексы могут служить катализаторами стереоспецифической полимеризации диенов [1] и олигомеризаци олефинов [2]. Кроме того, они играют важную роль как промежуточные соединения в ряде химических процессов (селективное окисление олефинов [3], димеризация замещенных алкенилгалогенидов [4] и т. п.). [c.304]

    Р. Шмид — профессор Института неорганической химии Венского технического университета, ученик известного австрийского химика Виктора Гутмана, основателя школы координационной химии в неводных растворах. В. Н. Сапунов — профессор Московского химико-технологического института им. Д. И. Менделеева занимается изучением кинетики органических реакций (окисление, эпоксидирование, этерификация), катализом комплексами переходных металлов. [c.6]

    Использованию комплексов переходных металлов для превращения ненасыщенных углеводородов в полимеры, спирты, кетоны, карбоновые кислоты и для других подобных целей посвящена обширная патентная и научная литература. Открытие полимеризации этилена и пропилена при низком давлении, сделанное Циглером и Натта, привело к широкому использованию алкильных соединении алюминия как алкилирующих агентов и восстановителей для комплексов металлов. Аналогично открытое Шмидтом катализируемое палладием окисление алкенов стимулировало огромный рост в использовании комплексов палладия для разнообразных каталитических реакций и для их применения в тех органических реакциях, где они используются как исходные реагенты в стехиометрических соотношениях. [c.614]

    Определив формальное состояние окисления, перейдем к вопросу о применимости правила восемнадцати электронов для описания комплексов переходных металлов. Наилучшие результаты это правило дает при рассмотрении карбонильных и нитро-зильных комплексов. Известны следующие моноядерные карбонильные комплексы элементов первого ряда переходных металлов Сг(С0)б, Ре(С0)5 и N1(00)4. Как уже было отмечено выше, все металлы здесь следует рассматривать как находящиеся в нулевом состоянии окисления. При этом они будут обладать (ср. с табл. 4.1) шестью, восемью и десятью 45 и 3( -элек-тронами соответственно для атомов Сг, Ре и Ni. [c.129]

    С использованием энергии сопряженного окисления нефти образуется в конечном счете и вся сложнейшая гамма соединений, входящих в состав живого вещества. Во всех этих и в других подобных случаях в живом ор-я анизме действуют биокатализаторы — ферменты. Некоторые из ферментов удалось выделить в индивидуальном виде с сохранением вне живого организма их специфического каталитического действия. Ферментативные препараты широко используются в пищевой и легкой промышленности и приобретают применение в медицине. Следовательно, для проявления каталитических свойств многих ферментов участие живого организма не требуется. Это показывает отсутствие принципиальных, непреодолимых границ между биологическим и обычным катализом, хотя пока в биокатализе господствуют органические катализаторы, а в обычном — неорганические, и по химическому строению и каталитическим свойствам ферменты сложнее и совершеннее. Нои эти различия смягчаются благодаря появлению новых классов органических и металлоорганичееких искусственных катализаторов. Это органические полимерные иониты и полупроводники, разноо бразные комплексы переходных металлов с органическими и неорганическими лигандами и т. д. Поэтому каталитические процессы, встречающиеся пока только в живом организме, можно надеяться осуществить в будущем с помощью искусственных катализаторов. Это же справедливо и для многих других реакций, пока не осуществленных ни в обычном, ни в биологическом катализе. [c.10]

    Гидрированием И, получают вторичные амины RNH Hз, окислением-изоцианаты RN= = 0, термич. изомеризацией (200-250 °С) - нитрилы R =N И. образуют изони-трильные комплексы переходных металлов, вступают в многокомпонентные р-ции (см. Пассерини реакция, Уги реакция). [c.191]

    Модификация стерических и аяектронных свойств лигандов, явно не участвующих в химическом превращении в ходе каталитического процесса, например, фосфинов или карбонилов может играть решающую роль в проявлении активности и селективности катализатора. Это позволяет регулировать каталитические свойства комплексов переходных металлов, так как в каталитическом цикле переходные металлы способны проявлять различные степени окисления и координации, объединять и ориентировать различные компоненты реакционной среды в пределах координационной сферы, стабилизировать промежуточные реакционноспособные соединения (гидриды, алкилы металлов и др.). [c.515]

    К реакциям окисления условно можно отнести и гидроформилирование алкенов. Реакция алкенов с оксидом углерода(П) и водородом служит примером все возрастающей роли комплексов переходных металлов в химии алкенов. Реакция идет под давлением и при нагревании в присутствии комплексов переходных металлов и является одним из наиболее эффективных методов получения альдегидов. Эта реакция называется гидроформилиро-ванием алкенов, а соответствующий процесс в промышленности относят к числу процессов оксо-синтеза. [c.285]

    Для аутоокисления характерна атака радикала (генерируемого химическим, термическим или фотохимическим путем) на молекулярный кислорода основном состоянии ( 2). Реакция катализируется одноэлектронными окислительно-восстановительными реагентами (обычно используются соли или комплексы переходных металлов Со, Си, Fe, Мп, Rh и 1г) и протекает с разложением образующегося гидропероксида. Реакции, используемые в промышленности (см. табл. 4.1.1), обычно проводятся в жидкой фазе при умеренных температурах и давлении. В процессе Хал-кона восстановление гидропероксида [схема (2)] сочетается с получением пропеноксида. В реакции Башкирова (аутоокисление в присутствии борной кислоты) образование эфиров борной кислоты, предохраняющее от дальнейшего окисления, дает возможность увеличить выход вторичных спиртов. [c.25]

    Получ. действие реактивов. Грнньяра или орг, производных щел. металлов на соли переходных металлов или, галогенсодержащие комплексы взаимод орг. галогенпроизводных с анионными комплексами переходных металлов присоед. гидриДов металлов к олефинам. Комплексы переходных металлов с огсвязью М —С — промежут. соеД во мн. промышленно важных процессах (окисление, гидроформи-лирование, изомеризация, олигомЬризация и полимеризация олефинов). Нек ые комплексы этого типа встречаются в природе (напр., кобаламин). [c.270]

    Комплексы переходных металлов - хорошо известные и широко используемые в промышленности катализаторы процессов жидкофазного окисления углеводрродов. Переход от гомогенных катализаторов к комплексам, химически закрепленным на поверхности минеральных носителей, с одной стороны, сохраняет особенности катализа гомогенными системами, о другой, - делает катализаторы болев технологичными. [c.21]

    В обзоре предстаалены работы авторов за период 1990-2005 гг., опубликованные и подготовленные к публикации. Часть работ выполнена при участии профессора И. П. Скибида. Нами была обоснована и экспериментально подтверждена идея конструирования композиционных катализаторов на основе комплексов переходных металлов (M(L )n (М = Ni(II), Fe(IH), o(II), L" = асас, enama ) и макроциклических полиэфиров в качестве лигандов-активаторов для селективного окисления этилбензола молекулярным О2 в а-фенилэтилгидропероксид. [c.235]

    Кроме теоретического рассмотрения [гл. 1, Гал], активность комплексов переходных металлов М(Ь )д (М = Ni, Со, Fe, = enama , асас ), в стадии продолжепия цепи (Кат -ь RO2 —>) в реакции окисления этилбензола оценивается только в наших работах [12,15,19-21]. [c.250]


Смотреть страницы где упоминается термин Комплексы переходных металлов окисление: [c.450]    [c.233]    [c.2177]    [c.593]    [c.419]    [c.15]    [c.23]    [c.308]    [c.15]    [c.23]    [c.41]    [c.355]    [c.234]    [c.352]    [c.51]    [c.447]    [c.188]   
Промежуточные продукты в электрохимических реакциях (0) -- [ c.58 , c.165 , c.168 , c.203 , c.204 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексы металлов комплексы металлов

Комплексы переходных металлов

Металло-азо-комплексы

Металлов комплексы

Металлы окисление

Металлы переходные



© 2025 chem21.info Реклама на сайте