Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Седиментация коллоидных растворо

    Если в системе силы тяжести полностью уравновешены силами диффузии, наступает так называемое седиментационное равновесие, которое характеризуется равенством скоростей седиментации и диффузии. При этом через единицу поверхности сечения в единицу времени проходит вниз столько же оседающих частиц, сколько их проходит вверх с диффузионным потоком. Седиментационное равновесие наблюдается не только в коллоидных растворах, но и в молекулярно-дисперсных системах. Это равновесие характеризуется постепенным уменьшением концентрации частиц в направлении от нижних слоев к верхним. Распределение частиц в зависимости от высоты столба жидкости подчиняется гипсометрическому (или барометрическому) закону Лапласа в применении к золям при [c.307]


    Количественное изучение явления седиментации дает возможность получить много весьма валяных сведений об изучаемом коллоиде, и прежде всего о размерах его частиц. Изучая седиментацию суспензии гуммигута, Перрен на основе молекулярно-кинетических представлений определил (1908—1910) число Авогадро /Уа. При этом были получены значения N к, близкие к полученным другими методами это явилось блестящим подтверждением универсальности молекулярно-кинетической теории и ее применимости к коллоидным растворам. [c.514]

    Дисперсные системы. Коллоидные растворы. Получение коллоидных растворов и и.х отличительные свойства. Степень дисперсности. Мицелла. Золи. Лиофильные и лиофобные коллоиды. Коагуляция и седиментация и причины образования осадка в коллоидных системах. Гели. Взаимная коагуляция коллоидов. Обратимые и необратимые коллоиды. [c.244]

    Коагуляция и седиментация коллоидных растворов могут быть вызваны длительным нагреванием или изменением концентрации электролита дисперсной среде. При увеличении концентрации ионов в коллоидном растворе внешние ионы мицеллы проникают в частицу и, уменьшая потенциал ее, вызывают процесс коагуляции. [c.223]

    Молекулярно-кинетические, реологические и оптические свойства коллоидных систем. Физической и коллоидной химией изучаются такие явления, как седиментация коллоидных частиц, их движение, вязкость коллоидных растворов, рассеяние ими света и др., и разрабатываются совершенная технология и методы анализа мягких лекарственных форм, растворов высокомолекулярных веществ и т. д. [c.11]

    По ряду свойств аэрозоли подобны коллоидным растворам для них характерны термодинамическая неустойчивость, броуновское движение, диффузия, седиментация, эффект Тиндаля, избирательное светорассеяние, электрофорез и др. Но газовая дисперсионная среда вносит некоторые особенности светорассеяние в аэрозолях значительно сильнее, чем в коллоидных растворах броуновское движение и диффузия — более интенсивны электрический заряд дисперсных частиц аэрозолей ничтожно мал, а воздух [c.290]

    Особенности белков связаны с их большой молекулярной массой, колеблющейся в широких пределах. Наиболее точные данные об их молекулярной массе получены сравнительно недавно в результате применения метода Сведберга, основанного на определении молекулярной массы измерением скорости седиментации коллоидных растворов белков. В таблице 40 приведены молекулярные массы некоторых белков. [c.276]


    Коагуляция, седиментация и пептизация коллоидных растворов. Изменение потенциала коллоидной частицы приводит к слипанию частиц между собой, что снижает степень дисперсности и устойчивость коллоидного раствора. Этот процесс называется коагуляцией. Если процесс коагуляции незначителен, то коллоидный раствор сохраняется. Так, если окраска золя золота изменяется из красной в фиолетовую, то это указывает, что имеет место процесс коагуляции. Если, коагуляция продолжается, то раствор мутнеет и укрупнившиеся хлопья дисперсоида начинают осаждаться. Этот процесс называется седиментацией. [c.223]

    С целью определения эффективности разделения водно-топливных эмульсий от воздействия только электростатического поля целесообразно проводить предварительное отстаивание их в поле сил тяжести. Установлено, что процесс разделения смесей водно-топливных эмульсий с топливами (Т-1, ТС-1, Т-2) при отстаивании начинается практически сразу после выключения механической мешалки. Процесс разделения идет тем интенсивнее, чем больше концентрация воды в исходной эмульсии. В эмульсиях с более вязкими топливами процесс разделения идет менее интенсивно. Так, водно-топливная эмульсия (сх-1 = 15 %) после 30 с отстаивания содержала всего 3,7 % воды, остальная вода коагулировала из коллоидного раствора. Наиболее интенсивно процесс седиментации под действием сил тяжести идет в начальный период времени. [c.20]

    Лучшие свойства обеспечиваются при получении частичек менее 1 мкм, что соответствует истинно коллоидному раствору. Последний отличается от суспензии сравнительно меньшей скоростью седиментации, что связано с броуновским движением, присущим частичкам в коллоидных растворах. Не являясь истинными растворами, частички малых размеров при определенных концентрациях по закону энтропии стремятся к равномерному распределению в объеме. Этому препятствует коагуляция. Согласно теоретическим и экспериментальным данным устойчивость коллоидных растворов повышается с уменьшением размеров частичек. Это связано, в частности, с тем, что чем крупнее частичка, тем выше вероятность ее превращения в центр коагуляции. [c.364]

    Влияние электролитов на скорость седиментации грубых суспензий аналогично влиянию их на скорость коагуляции коллоидных растворов. [c.100]

    Седиментируют только достаточно крупные частицы. Так, частицы кварца размером 5 10 нм оседают в воде за час на 3 см. Седиментации частиц размером 10 нм и менее препятствует броуновское движение. Поэтому истинные и коллоидные растворы, включая растворы высокомолекулярных соединений, седиментационно устойчивы, а суспензии — неустойчивы. [c.299]

    Достаточная устойчивость коллоидного раствора обеспечивается при величине электрокинетического потенциала = 0,07В. При < 0,03В у некоторой доли частиц силы отталкивания оказываются недостаточными, чтобы противостоять агрегации, и поэтому происходит слияние частиц, их укрупнение или коагуляция, которая неизбежно заканчивается седиментацией. [c.412]

    Нейтрализация электрических зарядов гранул приводит к укрупнению частиц в более сложные агрегаты этот процесс называется коагуляцией. Укрупненные агрегаты выпадают в осадок этот процесс называется седиментацией. Осадки, образующиеся при коагуляции коллоидных растворов, называются гелями. Лиофильные коллоиды при выпадении в осадок захватывают с собою относительно большое количество растворителя, образуя желатиноподобные массы, называемые студнями. Вещества, вызывающие коагуляцию, называются коагулянтами к ним [c.245]

    Явление осаждения частиц дисперсной фазы под действием силы тяжести называют седиментацией. Подбором соответсту-ющего электролита осевшие частицы можно снова зарядить и перевести в коллоидный раствор. Переход осадка в золь называется пептизацией, а вещества, способствующие этому процессу, — пептизаторами. [c.420]

    Седиментация. При действии гравитационного поля на коллоидный раствор или суспензию седиментация частиц замедляется вследствие внутреннего трения в растворителе. Седиментация грубодисперсных частиц идет в основном под действием силы тяжести. Для седиментации более подвижных коллоидных частиц необходимо значительно более сильное ускорение, что осуществляется при помощи центрифуг. При применении, например, ультрацентрифуг достигается ускорение Ь , превышающее земное ускорение силы тяжести д в соответствии с уравнением [c.335]

    Лабораторные исследования отстаивания водно-топливных эмульсий показали, что независимо от заданной первоначальной концентрации водной фазы по высоте объема, как правило, образуются три характерных слоя 1-чистое топливо 2 - эмульгированное топливо, содержащее воду в виде дисперсной фазы 3 — чистая вода. Очевидно, что задачей очистки топлива от воды является разделение эмульгированной части объема, представляющей собой устойчивый коллоидный раствор с малым (меньше 5 %) содержанием водной фазы. При этом за эталон устойчивой эмульсии принимают эмульсию, полное время разделения которой составляет около 4 ч. Содержание воды около 4 % в эмульгированной части следует считать предельным для реактивных топлив, так как при больщей концентрации воды происходит седиментация раствора и удаление излищней воды из топливных систем не представляет больших технических трудностей. [c.21]


    Седиментация. Частицы веществ, находящихся во взвешенном состоянии в газообразной или жидкой среде, испытывают воздействие двух противоположно направленных сил. Это — силы тяжести, которые стремятся сконцентрировать частицы в нижних слоях, и силы диффузии, перемещающие дисперсную фазу аэрозолей, коллоидных растворов из больших концентраций в меньшие. [c.147]

    Если заряд коллоидной частицы уменьшить до некоторого минимума, то устойчивость коллоидного раствора нарушится, произойдет слипание и соединение частиц в более крупные агрегаты (этот процесс называется коагуляцией) и их осаждение (седиментация). [c.168]

    Однако рассматриваемое равновесие может быть сдвинуто в сторону преобладания седиментации при замене гравитационного поля центробежным со значительно большим ускорением, создаваемым действием центрифуги или ультрацентрифуги. Этот метод, впервые использованный Думанским и получивший развитие в работах Сведберга и его школы, позволяет в настоящее время создавать ускорения до 10 —и благодаря этому производить не только седиментацию коллоидных частиц, но даже и седиментационное разделение молекул разной массы. Применение ультрацентрифуг дает возможность проводить наряду с дисперсионным анализом коллоидных систем и растворов высокомолекулярных соединений также препаративное разделение их на фракции. [c.156]

    Коллоидные растворы по сравнению с истинными агрегативно неустойчивы. Обладая сильно развитой поверхностью и избытком свободной энергии, такие системы имеют тенденцию к понижению запаса свободной энергии до некоторого минимума. В дисперсных системах уменьшение удельной поверхности и поверхностной энергии достигается в результате укрупнения частиц. Этот процесс называется коагуляцией. Укрупнение частиц, приводит к осаждению коллоидного вещества в осадок, т. е. к седиментации. [c.373]

    Если Еот > Епр (по абсолютной величине), то отталкивание преобладает над притяжением и дисперсная система устойчива. Если Еот < Епр, то происходит слипание сталкивающихся при броуновском движении. коллоидных частиц в более крупные агрегаты и седиментация последних. Коллоидный раствор коагулирует, т.е. разделяется на коагулят (осадок) и дисперсионную среду. [c.118]

    Молекулярно-кинетические свойства. Молекулярно-кинетиче-скими называются свойства, которые обусловлены хаотическим тепловым движением частиц. Применительно к коллоидным растворам к этим свойствам следует отнести броуновское движение, диффузию и седиментацию. [c.22]

    Однако обычно в момент образования коллоидных растворов и аэрозолей седиментация ие играет существенной роли, являясь вторичным процессом. Этому обстоятельству благоприятствуют небольшие размеры первоначальных частиц и применяемое для ускорения процесса кристаллизации интенсивное перемешивание раствора. [c.101]

    Броуновское движение коллоидных частиц оказывает непосредственное влияние на седиментацию, т. е. осаждение коллоидных растворов. Уравнение (4) для скорости падения шарика в среде с вязкостью т] [c.31]

    Рассмотрим, к чему приводит конкуренция этих двух факторов. Допустим, что коллоидный раствор не находится в поле тяжести Земли (этого можно достичь, например, если поместить раствор на спутник). Тогда в этом растворе не происходит седиментации, и концентрация его одинакова во всех точках. А теперь включим гравитационное поле — частицы устремятся к дну сосуда. Изменение концентрации, вызванное седиментацией, создаст концентрационный градиент АС/АХ по высоте сосуда, который, в свою очередь, приведет, согласно закону Фика (5), к диффузии вещества от концентрированных нижних слоев раствора к разбавленным верхним. [c.32]

    Все белки денатурируются под действием кислот или при нагревании, что проявляется в коагуляции и уменьЩенин растворимости, а также в потере специфических биологических свойств. Определение молекулярного веса белков является трудной задачей. Исходя из содержания железа в гемоглобине крупного рогатого скота, было найдено, что молекулярный вес этого белка лежит в пределах 16 000— 17 000. Молекулярный вес казеина, определенный по содержанию легко отщепляющейся серы, равен 16 000 и т. д. Подобные выводы, однако, справедливы лншь прн том условии, что данный белок однороден и содержит в своей молекуле только один атом того элемента, который используется для расчета молекулярного веса. Криоскопическое определение молекулярного веса затрудняется тем, что даже растворимые белки образуют коллоидные растворы наблюдаемое малое понижение точки плавления соответствует большому весу мицеллы. Более подходящими являются методы, основанные на определении скорости диффузии и вязкости. Помимо них практическое значение приобрел предложенный Сведбергом способ определения велич1п-1ы частиц по скорости седиментации в ультрацентрифуге. [c.396]

    Для того, чтобы применить теорию к реальным коллоидным растворам, в которых частицы неодинаковы и происходит седиментация, а также перемещи-вание золя и другие осложняющие процессы, необходимо дополнить теорию Смолуховского. Эти дополнения достаточно сложны, и мы не будем их рассматривать. [c.107]

    В дальнейшем, в процессе роста кристалликов, их размеры и вес могут достигнуть столь значительной величины, что начинает сказываться влияние силы тяжести. Возникающая седиментация (осаждение) коллоидного раствора или аэрозоля приводит к неравномерности распределения частиц в пространстве. В верхней части раствора и общее число частиц и относительная доля больших кристалликов уменьшаются по сравнению с нижней. Кроме того, частицы максимальных размеров, доходя до дна сосуда, прилипают к последнему и растут далее, уже не перемещаясь. [c.100]

    Из уравнения (II. 9) видно, что скорость оседания особенно сильно зависит от размера частиц. Так, например, частицы серебра при диаметре 200 р. оседают в воде на 1 см за 0,05 сек., при диаметре 2[а — за 500сек., а при диаметре 20м л — лишь за 58 дней. Если частицы легче жидкости (например, в эмульсии масла, в воде), то (й —р) имеет обратный знак, и вместо оседания наблюдается всплывание частиц, согласно тому же закону. При отсутствии противодействующих сил седиментация коллоидных частиц за достаточно продолжительный промежуток времени неизменно приводила бы к осаждению всего коллоида на дне сосуда. Этого, однако, обычно не происходит ввиду того, что оседанию частиц (даже при полном покое раствора, при постоянстве температуры, отсутствии конвекционных потоков и др.) всегда противодействует броуновское движение, стремящееся равйомерно распределить коллоидные частицы по всему объему раствора. Чем меньше частицы, тем сильнее сказывается влияние броуновского движения или диффузии (табл. 4). [c.40]

    В случае измерения скорости седиментации необходимы поля центробежных сил, обеспечивающие полное осаждение белков. Белок, находящийся в виде коллоидного раствора, обладает большей плотностью, чем растворитель. В ходе центрифугирования на молекулу белка действует значительная центробежная сила, которая, вызывая движение молекулы через среду, обеспечивает скорость перемещения, пропорциональную трению молекулы в среде. Скорость седиментации прямо пропорциональна молекулярной массе. Для определения молекулярной массы необходимы приборы со скоростью вращения ротора до 60 тыс. об/мин. Раствором белка заполняют прозрачную ячейку. Изменения концентрации, возникающие в процессе центрифугирования, могут прослеживаться с помощью оптических методов, например посредством шлирен- или интерференционной оптики, а также посредством прямого измерения абсорбции в УФ-области (сканирующая система). [c.360]

    КОЛЛОИДНЫЕ МЕЛЬНИЦЫ, см. Диспергирование. КОЛЛОИДНЫЕ РАСТВОРЫ, то же, что золи. КОЛЛОИДНЫЕ СИСТЕМЫ, Дисперсные системы с частицами дисперсной фазы от 10 до 10 см. Коллоидные частицы, участвуя в интенсивном броуновском движении, противостоят седиментаций в поле сил земного тяготения и сохраняют равномерное распределение по объему дисперсионной среды. Наиб, важны и многообразны К. с. с жидкой дисперсионной средой. Их делят ва лиофильные и лио-фобные. В первых частицы дисперсной фазы интенсивно взаимод. с окружающей жидк., поверхностное натяжение на границе фаз очень мало, вследствие чего зти К. с. термодинамически устойчивы. К лиофильным К. с. относятся мицеллярные р-ры ПАВ, р-ры нек-рых высокомол. в-в, орг. пигментов и красителей, критич. эмульсии, а также водные дисперсии нек-рых минералов. В лиофобных К. с. частицы слабо взаимод. с дисперсионной средой, межфазное натяжение довольно велико, сист. обладает значит, избытком своб. энергии н термодинамически неустойчива. Агрегативная устойчивость лиофобных К. с. сюычно обеспечивается присут. в сист. стабилизирующего в-ва, к-рое адсорбируется на коллоидных частицах, препятствуя их сближению и соединению. Типичные лиофобные К. с.— золи металлов, оксидов и сульфидов, латексы, а также гели, возникающие при коагуляции и структурировании золей. КОЛОРИМЕТРИЯ, см. Фотометрический аналпз. КОЛХИЦИНОВЫЕ АЛКАЛОИДЫ (трополоновые алкалоиды), выделены из нек-рых родов растений сем. лилейных (иНасеае). Включают ок, 30 представителей. [c.267]

    Наличие оптимальных доз полимера при флокуляции было установлено различными методами по изменению мутности коллоидного раствора или суспензии после добавления флокулянта (уменьшение мутности в грубодисперсных системах и увеличение в высокодисперсных), по скорости седиментации, по мутности или прозрачности суспензии после. оседания сфлокулированного взвешенного вещества, по объему осевшего осадка, по скорости фильтрования 4epee пористую перегородку с образованием слоя кека (максимальная скорость соответствует образованию наиболее крупных хлопьев), по качеству фильтрата и по времени защитного действия фильтрующей загрузки из зернистого материала. Результаты некоторых из-этих исследований представлены на рис. 11.10, а также на рис. 11.17,11.21,11.33, III.14, П1.16. [c.85]

    Для лиофобных коллоидов полезно различать седиментационную и агрегативную устойчивость. Седиментационной называют устойчивость дисперсии по отношению к силе тяжести. Разделение фаз в этом случае может быть обусловлено как седиментацией (осаждением) грубодисперсных и относительно тяжелых (с плотностью, превышающей плотность среды) частиц под влиянием сил тяжести, так и потерей агрегативной устойчивости в результате объединения (агрегации) частиц под действием различных факторов (добавления электролитов, флокулянтов, нагревания и др.). Под агрегативной устойчивостью понимают, таким образом, способность противостоять слипанию частиц, т. е. способность системы сохранять степень дисперсности. Тонкодисперсные коллоидные растворы (золи, микроэмульсии) отличаются от грубодисперсных суспензий (взвесей) именно высокой агрегативной устойчивостью, тем, что броуновское движение обеспечивает практически их неограниченную кинетическую устойчивость. V Коагуляция, под которой понимаем процесс слипания частиц с образованием более крупных агрегатов (коагулятов), может реализоваться только при условии, что агре-гативная устойчивость системы снижена настолько, что соударение частиц приводит к их необратимому слипанию. При этом энергия контактной связи не имеет существенного значения важно лишь, чтобы она превысила значение кТ, в противном случае тепловое движение будет разрушать связь. [c.7]


Смотреть страницы где упоминается термин Седиментация коллоидных растворо: [c.333]    [c.336]    [c.274]    [c.168]    [c.267]    [c.51]    [c.63]    [c.639]    [c.196]    [c.507]   
Физическая и коллоидная химия (1964) -- [ c.310 , c.311 ]




ПОИСК





Смотрите так же термины и статьи:

Растворы коллоидные

Седиментация

Седиментация седиментации



© 2024 chem21.info Реклама на сайте