Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Формование химических волокон полиамидных волокон

    Полиамидные смолы типа капрон, анид, энант способны плавиться без разложения с образованием термически устойчивых расплавов. На этой особенности полиамидов основан и впервые разработан один из самых высокопроизводительных способов формования химических волокон — формование волокна из расплава. [c.36]

    Монография, являющаяся пятой книгой из серии Химические волокна , посвящена химии и технологии производства полиамидных волокон. В ней рассматриваются синтез волокнообразующих полиамидов и их свойства, процессы формования и последующей обработки получаемых нитей, применяемое технологическое оборудование приводятся сведения о свойствах и модификации полиамидных волокон. [c.4]


    Высокие мех. характеристики в сочетании с низкой плотностью, хим. и термич. стойкостью (этим отличаются жесткоцепные полимеры они содержат циклич. группы в основных цепях макромолекул) определяют все более широкое использование ориентир, полимерных волокон тросы, канаты, ткани, армирующие элементы в разнообразных композиц. материалах и др. В технике широко распространены, напр., полиамидные, полиолефиновые, полиэфирные, поли-имидные, полиакрилонитрильные волокна. См. также Волокна химические, Формование химических волокон. [c.409]

    Таким образом, производство полиамидных волокон состой г нз следующих основных стадий получение мономера, полимеризация капролактама, формование волокна, текстильная обработка волокна. Первая стадия, т. е. получение мономера, является сложным, многостадийным химическим процессом и осуществляется, как правило, на специализированных химических заводах. Все остальные стадии осуществляются непосредственно на заводах, производящих химические волокна. [c.137]

    Синтетическое волокно — химическое волокно, получаемое из синтезированных высокомолекулярных соединений. Производится из растворов и эмульсий полимеров способами сухого и мокрого формования, а также методом формования из расплава или пластифицированного полимера. Основными видами синтетических волокон, наиболее широко используемыми в текстильных изделиях, являются полиамидные, полиэфирные, полиакрилонитрильные, [c.113]

    Лучше всего придавать химическую извитость волокну или нитям непосредственно после формования во время отделки. Так создается извитость вискозных волокон во время свободной усадки при их обработке острым паром или слабокислыми растворами при 95—100° С. Химическим способом можно также извивать полиакрилонитрильные (во время отмывки растворителя при повышенных температурах) или полиамидные волокна (обработкой горячими или холодными разбавленными растворами серной кислоты). [c.314]

    Химическая модификация полиамидных волокон методами прививок также не нашла широкого применения, так как формование волокон из сополимеров представляет широкие возможности изменения свойств волокна. По той же причине до сих пор не нашли применения методы прививки стирола и других виниловых мономеров к полиэфирным волокнам. [c.367]

    Форма макромолекул в равновесном состоянии зависит от химического строения полимера, которое в значительной степени влияет на интенсивность межмолекулярного взаимодействия. Этот фактор в основном определяет соотношение высокоэластического и общего удлинений волокна. Большинство полимеров, используемых для получения волокон, содержит полярные группы и имеет сравнительно вытянутую форму макромолекул в равновесном состоянии. Поэтому величина высокоэластической деформации у этих соединений значительно меньше, чем у каучукоподобных полимеров. Изменяя условия формования волокна (из одного и того же полимера), можно в сравнительно широких пределах изменять величину замедленно-эластических деформаций (с большим периодом релаксации — более 0,5 мин) и тем самым суммарное удлинение волокна. Однако изменение условий формования не может существенно влиять на ускоренно-эластическое удлинение волокна, поскольку равновесная форма макромолекул зависит в основном от химического строения полимера. Поэтому, изменяя условия формования, нельзя приблизить гидратцеллюлозные волокна по эластическим свойствам к полиамидным. [c.111]


    Высоким начальным модулем, не уступающим полиэфирному волокну, обладает и синтетическое волокно из поливинилового спирта . Полиамидные волокна и нити имеют сравнительно низкий начальный модуль, что является их существенным недостатком при переработке и эксплуатации. Более низкое значение начального модуля полиэфирного и полиакрилонитрильного штапельного волокна по сравнению с нитью объясняется тем, что в штапельном волокне ориентация макромолекул, как правило, ниже, чем в филаментных нитях. Кроме того, штапельное волокно благодаря особенностям условий сушки отрелаксировано значительно больше. Разница в величине начального модуля, определяемая различием химической природы полимера, может быть в известной степени уменьшена изменением степени ориентации в процессе формования или последующей обработки волокна. [c.138]

    Полиэтилен применяют для изготовления электроизоляционных оболочек всевозможных кабелей,, в том числе подводных, как защитный материал, используемый в агрессивных средах, в качестве упаковочного пленочного материала, для изготовления небьющейся тары и т. д. Полиэтилен используют и в производстве химического волокна, отличающегося от других волокон повышенной химической стойкостью. Для этой цели в наибольшей степени пригоден полиэтилен с молекулярным весом 60 тыс.— 130 тыс. Благодаря ориентации волокон в процессе их формования полимер приобретает удовлетворительную прочность, сохраняя эластичность до —100° С. К недостаткам полиэтиленового волокна следует отнести его меньшую эластичность при 20° С по сравнению с полиамидным волокном и низкую температуру размягчения. [c.246]

    Полиамиды находят все более широкое применение для изготовления винтов небольших прибрежных судов, которые могут задевать плавающие или затопленные бревна, обломки строительного мусора и т. п. Кроме того, полиамидные винты почти не разъедаются морской водой, что обеспечивает их преимущество по сравнению с винтами, изготовленными, например из бронзы. Лопасти пропеллеров из полиамидов рекомендуется делать более толстыми, чем из металла, для компенсации низкой жесткости полиамидов. В том случае, когда требуется повышенная жесткость лопастей, лучше всего использовать ПА 66, отличающийся повышенным модулем упругости, или полиамид, полученный путем химического формования. При работе детален или узлов в тяжелых условиях для достижения требуемых показателей свойств используют полиамиды, наполненные стеклянным волокном. Этим путем идут, например, при изготовлении воздушных винтов. [c.221]

    Полипропиленовые волокна характеризуются достаточно высокой прочностью, которая не изменяется при погружении волокна в воду. По эластичности эти волокна мало уступают полиамидным и превосходят большинство других синтетических волокон. Полипропиленовое волокно самое легкое из всех химических и природных волокон. Это волокно не поглощает влагу его кондиционная влажность практически равна нулю. Волокно сильно электризуется. Эти свойства полипропиленовых волокон затрудняют их крашение и переработку в текстильной и трикотажной промышленности. Крашение этих волокон обычно проводят путем введения пигментов и красителей в расплавленный полимер перед формованием. [c.33]

    При овладении технологией формования, а также при хорошей гомогенности и отсутствии механических и химических загрязнений в полиамидных нитях, необходимость в предварительном кручении отпадает, и процесс вытяжки протекает без помех. Если раньше число обрывов нитей составляло 0,5—1 на 100 ООО м готового вытянутого волокна, то в настоящее время оно равно 0,5—1 на 1 кг вытянутой нити (1 кг нити с номером 300 соответствует 300 ООО м). [c.299]

    Для обеспечения бесперебойности процесса формования на описанной в предыдущем разделе прядильной машине с плавильной решеткой необходимо соблюдать ряд условий, которые будут подробно изложены в следующих разделах. Кроме этих общих правил проведения технологического процесса, обусловленных свойствами полиамидов, особенностями процесса формования из расплава при применении одинаковой в принципе конструкции прядильных машин, в ряде случаев возможны некоторые отклонения, связанные с особенностями конструкции отдельных частей машины, выбранной схемой проведения процесса формования (простые, двойные или счетверенные прядильные места) или с предварительной подготовкой полиамидной крошки, используемой для формования волокна. Некоторые различия в свойствах, качестве и прочности получаемого полиамидного шелка требуют применения при формовании особых приспособлений и приемов. Мнения о целесообразности того или другого приема при формовании волокна расходятся. Это не удивительно, если учесть, что метод формования из расплава применятся сравнительно недавно. Однако и в этом случае справедливо основное положение, относящееся к формованию всех видов химических волокон и заключающееся в том, что все многообразие свойств волокна — его достоинства и недостатки — определяются в известной степени правильным или неправильным проведением процесса формования. [c.310]


    Производство синтетических волокон. Синтетические волокна обладают многими ценными свойствами — высокой механической прочностью и химической стойкостью, малой горючестью, низкой гигроскопичностью, устойчивостью к действию микроорганизмов и т. д. производство и потребление синтетических волокон неуклонно растет. Наибольшее значение получили полиамидные (капрон, найлон) и полиэфирные волокна (лавсан). Формование этих волокон производят из расплава полимера. [c.256]

    Если до 1940 г. выпускались только вискозные, медноаммиачные и ацетатные волокна, то в настоящее время в больших количествах производится более 10 видов химических волокон. Среди них такие широко известные волокна, как полиамидные, полиэфирные, полиакрилонитрильные, полипропиленовые и другие. Благодаря использованию новых методов формования, вытягивания, термообработки и модификации в последние годы значительно увеличился также ассортимент волокон каждого вида. [c.7]

    В области крупнотоннажных производств химических волокон наиболее высокие технико-экономические показатели имеет способ переработки волокнообразующих полимеров методом экструзии из расплава полимера. Это, наряду с отличным комплексом физико-механических свойств волокон, полученных рас-плавным способом формования, предопределяет большие масштабы и высокие темпы роста их производства. В настоящее время волокна, формуемые из расплава полимера (полиэфирные, полиамидные и полипропиленовые), занимают доминирующее положение в общем объеме выпускаемых химических волокон, при этом на долю полиэфирных и полиамидных волокон приходится около 65% (в общем производстве синтетических волокон — 78%). [c.42]

    Химические и термомеханические способы извивания химических волокон также основаны на использовании внутренних напряжений <Тв, возникающих в материале. Для получения извитости в процессе фор- Мования волокон необходимо наличие определенной неравномерности структуры, создающей возмущающий момент Мо. Это хорошо реализуется при формовании бикомпонентных волокон, так как они состоят из двух или более резко различных по структуре и усадочным свойствам составных частей. Значительную неравномерность структуры можно получить 1и при формовании однокомпонентных волокон. Чаще всего это удается осуществить у /волокон, дающих при формовании и вытягивании полиморфные переходы полипропиленовых, полиамидных, поли-формальдегидных и др. Из-за значительного радиального градиента температур во время охлаждения волокна в нем возникают значительные внутренние напряжения. Такое волокно после формования или вытягивания способно самопроизвольно извиваться в форме спирали [55]. [c.160]

    Первой стадией в процессе производства полиамидного волокна осуществляемой на заводах, является превращение водораствори мого мономера в полимер, нерастворимый в воде, который может быть переработан в волокно формованием из расплава. В промыш ленности химических волокон этот процесс часто называют поли меризацией. Как будет подробно показано ниже (часть П, раздел 1.7) термин полимеризация с реакционно-кинетической точки зрения является неправильным, так как в большинстве случаев промышленные методы синтеза полиамидов основаны на использовании реакции поликонденсацни. Поскольку, однако, в технике для реакции образования полиамидов (особенно при получении поликапроамида из капролактама) укоренилось название полимеризация , мы в дальнейшем будем использовать этот термин. [c.91]

    Для повышения огнестойкости полиамидных нитей могут быть использованы методы, применяемые для целлюлозных волокон. Это поверхностная отделка тканей, добавки антипиренов к полимеру перед формованием волокна и химическая модификация готового волокна. Поверхностная отделка тканей не придает материалу устойчивой огнестойкости. Добавки, вводимые в полимер, не вымываются при обработке, но полученные волокна плавятся. Сохраняет свою актуальность проблема химической модификации готового волокна, которая наряду с огнезащитой дает возможность получения неплавкого материала. [c.372]

    Если температура воздуха в шахте Го достаточно низка, а скорость его велика, расплав в шахте вообще не кристаллизуется, и получается аморфное волокно. Так как скорость кристаллизации, определяемая константой к в уравнении (6.14), зависит от химической природы и гибкости макромолекулярных цепей и резко возрастает с увеличением их гибкости, то при обычных условиях формования (Гг20°С) полиамидные и полиолефиновые волокна кристаллизуются, в то время как волокна из полиэтилентерефталата не кристаллизуются. Если снизить температуру воздуха в шахте до минус 20° С, то и полиамидные волокна не будут кристаллизоваться при формовании, а при повышении То до 100° С и более кристаллизация всех указанных волокон происходит в шахте. [c.166]

    Крашение волокон в массе применяется в промышленности синтетических волокон при производстве полиамидного и полиэфирного волокон. Красители должны обладать высокой термостойкостью. По данным В. И. Майбороды и oтp.2 для крашения капронового и лавсанового волокон в массе можно применять сравнительно широкий ассортимент красителей. При производстве окрашенного в массе волокна несколько затрудняется процесс формования, так как увеличивается засоряе-мость фильер, особенно если краситель не растворяется в полимере (в этом случае для предотвращения засорения фильер краситель должен обладать высокой степенью дисперсности). До недавнего времени на практике наиболее часто применялось крашение полиэтиленового моноволокна в массе . Полипропиленовое волокно, окрашенное в массе, выпускается фирмой Монтекатини и фирмой Геркулес Паудер К° . При этом методе крашения обычно на предприятия поступает окрашенный полимер. Крашение полимера можно проводить и на заводе химического волокна. Для этого к неокрашенному гранулированному полимеру добавляют краситель и повторно гранулируют полимер, пропуская его через шнек. Такой метод крашения полимера нельзя признать рациональным. [c.218]

    Получение окрашенных волокои из цветных полиамидов является одним яз примеров практического использования химической модификации полиамидных волокон [16]. Окрашенные этим способом волокна по сравнению с паверхностно-окрашнваемыми волокнами отличаются большей устойчивостью окраски к мокрым обработкам, поту и трению. Цветные полиамиды можно получать несколькими методами синтезом полиамидов с реакционноспособными группами, способными химически связывать красители при крашении готовых волокон путем использования при синтезе полиамида цветного сополимера или регулятора молекулярной массы и, наконец, введением активного красителя в расплав полиамида перед формованием волокна. [c.226]

    Для оценки зависимости прочности от ориентации может быть исп( ль-зован и другой подход. Только что рассмотренная модель строения полимера предусматривала сочетание аморфных и кристаллических участков полимера. Но можно представить себе, что такого чередования в полимере нет. Это относится, например, к слабо или медленно кристаллргзующимся в процессе формования волокон полимерам (целлюлоза, полиэтилентерефталат) или к полиамидным волокнам с кратностью вытяжки более 2—2,5, когда исходная кристаллическая структура разрушается и при последу-юш,ей ориентации начинает возникать новая кристаллическая модификация. В таких случаях правомерно рассматривать упрочнение при ориентации не как перестройку слабых участков, а как результат изменения соотношения между количеством разрушаемых при разрыве основных (химических) связей в цепи полимера и количеством распадающихся при этом межмолекулярных связей, причем это соотношение должно [c.282]

    При использовании многих видов химических волокон в производстве технических бумаг встречается ряд затруднений. Полиэфирные, полиамидные, полиакрилонитриловые, полиолефиновые и ряд других волокон из-за значительной гидрофобности плохо диспергируются в воде без применения вспомогательных веществ. Отсутствие способности к фибриллированию и к образованию между волокнами достаточной связи в мокром и сухом состоянии вызывает необходимость применять различные виды связующих, что значительно усложняет производственный процесс. Малогидрофильные синтетические волокна при обычных условиях бумажного производства не способны удержать достаточное количество воды для обеспечения нормального процесса формования бумажного листа [107, 114]. Механические свойства получаемых бумаг и их равномерность часто недостаточно высоки. [c.66]

    Полимеризацию или поликонденсацию ведут в присутствии стабилизаторов (например, уксусной кислоты) и активаторов (воды) в атмосфере инертного газа (азота). Стабилизаторы добавляют для направления процесса и для получения однородного по величине молекул полимера. От количества стабилизатора зависит средняя величина (длина) молекулы полимера. Мономеры — капролактам и сощй АГ—- представляют собой белые кристаллические вещества. Лолимеризация. производится, как правило, не на химических заводах, а на заводах синтетического волокна. Ниже описывается в общих чертах процесс формования полиамидных волокон [c.44]


Физико-химические основы технологии химических волокон (1972) -- [ c.197 ]




ПОИСК





Смотрите так же термины и статьи:

Волокна химические

Полиамидные волокна

Формование волокна

Формование химических волокон полиамидных



© 2025 chem21.info Реклама на сайте