Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиамидные волокна модификация

    Одним из основных направлений дальнейшего научво-техничеокого прогресса в области химических волокон является химическая модификация многотоннажных волокон существующих типов [1]. Это применимо к П0лиа1мидным волокнам. Хотя в промышленных масштабах модифицированные полиамидные волокна пока не выпускаются, многочисленные исследования в этой области дают основание полагать, что это в перспективе возможно. [c.220]


    Модифицированные полиамидные волокна. Модификацией найлонов 6 и 66 были получены полиамидные волокна, обладающие повышенным сродством к красителям. Удалось также получить- полиамидные волокна, которые окрашиваются не кислотными, а основными красителями. Эти волокна применяют, в первую очередь, для изготовления ковров. Смеси разных типов волокон можно окрашивать в различные тона, а также получать многоцветный рисунок однованным способом при соответствующем подборе красителей (см. стр. 67). [c.28]

    Полиамидные волокна. Химическая модификация волокон из полиамидов может быть также осуществлена методами радиационной или окислительной прививки различных виниловых мономеров. Для этого были использованы акрилонитрил, акриловая или метакриловая кислоты, стирол. Целью прививок является повышение гидрофильности или гидрофобности, свето- и термостойкости и т. п. [c.366]

    Полиамидные волокна легче других могут подвергаться тепловой обработке с целью модификации ик механических и физических свойств. [c.131]

    Естественно, что волокна, получаемые из модифицированных полиамидов, будут отличаться по своим свойствам от обычных полиамидных волокон. Ниже приводятся краткие сведения об основных методах химической модификации полиамидов и свойствах волокон на их основе. [c.100]

    Полиамидные волокна для народного потребления должны приобрести качественно новые свойства за счет их физической и химической модификации. В первую очередь будут решаться задачи повышения санитарно-гигиенических свойств волокон, негорючести, свето- и термостабилизации, а также других эстетических и эксплуатационных свойств нитей. [c.11]

    Исключение составляет буква Н в названиях кислотных красителей, которая ставится перед буквенным и цифровым обозначениями оттенка и указывает, что данный краситель окрашивает шерсть из нейтральной ванны (например, Кислотный красный Н2С). Буква X в названиях прямых красителей указывает на то, что устойчивость окраски к стирке может быть повышена обработкой солями хрома, а в названиях кубовых и активных красителей — что крашение может производиться по так называемому холодному способу (при низкой температуре, а в случае кубовых красителей и при малой щелочности среды, что позволяет применять их для окрашивания белковых волокон). Буква Т в названиях кубовых красителей означает, что крашение может производиться по так называемому теплому способу (средний между обычным и холодным). Буква М в названиях прямых, дисперсных и кислотных красителей означает, что они являются металлсодержащими (внутрикомплексными соединениями с металлами), в названиях кубовых красителей — что они специально предназначены для крашения меха, а в названиях лаков — что они представляют собой соли марганца. Буква У в названиях прямых и сернистых красителей указывает на то, что устойчивость окраски к свету может быть увеличена обработкой солями меди ( упрочняемые окраски), а в названиях пигментов (фталоцианиновых) — на особую устойчивость формы, в которой они выпускаются. Буквы Б, К и Н в названиях лаков означают, что они являются бариевыми, кальциевыми или натриевыми солями. В названиях пигментов буква А указывает на то, что они предназначены для крашения ацетатного волокна в массе, В — вискозы в массе (то же и в названиях кубовых красителей), Р — резины, ТП —для пигментной печати текстильных материалов (тонкодисперсные пигменты), Б — на то, что пигменты (фталоцианиновые) выпускаются в кристаллической бета-модификации, обладающей лучшими качествами. Буква П в названиях кубовых красителей означает, что они выпущены в виде специальных паст для печати, а в названиях активных — что они предназначены для крашения полиамидных волокон. Буква Д в названиях кубовых красителей указывает на то, что они выпущены в тонкодисперсном состоянии для суспензионного крашения, буква Ш в названиях кубовых и активных красителей — что они предназначены для крашения шерсти, а в названиях прямых — что они применяются только для крашения шубной овчины. Буква Ц означает, что краситель выпускается в виде двойной соли с хлоридом цинка, а Бс — в виде гидросульфитного производного. Буквенное обозначение б/к в названиях кислотных красителей указывает на то, что краситель не закрашивает хлопчатобумажную кромку. [c.44]


    Озонируемый полимер может быть в виде волокна или пленки (в этом случае прививка происходит на поверхности) или находиться в растворе. В качестве исходных полимеров использовали полиэтилен, поливинилхлорид и полибутадиен. Изотактические и атактические ноли-а-олефины также подвергали озонированию, после чего проводили привитую сополимеризацию с виниловыми мономерами. Полиамидные и полистирольные волокна и пленки [161, 162] озонировали и затем осуществляли модификацию их поверхности прививкой полистирола и различных полярных виниловых мономеров. Целлюлозу и крахмал также озонировали и модифицировали прививкой виниловых мономеров [163, 164]. [c.294]

    Синтез линейных сополимеров, содержащих в макромолекуле небольшое количество (5—15% от массы сополимера) второго мономера. При этом можно, напр., повысить эластичность соответствующего гомополимера и, следовательно, получаемого из него волокна. В результате введения в макромолекулу второго мономера, содержащего полярные функциональные группы, в большинстве случаев улучшается гигроскопичность и накрашиваемость волокна. Этот вариант широко используется для модификации свойств волокон из карбоцепных синтетич. полимеров и м. б. применен для модификации нек-рых синтетич. гетеро-цепных волокон, в частности полиамидных (изменение темп-ры плавления, накрашиваемости, растворимости). [c.137]

    Химическая модификация полиамидных волокон методами прививок также не нашла широкого применения, так как формование волокон из сополимеров представляет широкие возможности изменения свойств волокна. По той же причине до сих пор не нашли применения методы прививки стирола и других виниловых мономеров к полиэфирным волокнам. [c.367]

    На повышение прочности связи непропитанного корда в зависимости от модификации резин решающее влияние оказывает тип волокна (вискозное, полиамидное, полиэфирное). В силу различной химической природы эффективность крепления этих волокон к резинам неодинакова. [c.192]

    Неионные красители, такие, как азоидные, новые красители, предназначенные для крашения как целлюлозных, так и полиэфирных волокон, кубовые красители можно экстрагировать неводным органическим растворителем, если краситель достаточно растворим и устойчив в горячем растворителе. Неионные красители экстрагировали три- и тетраэтиленгликолем, стабилизированным фенолом, но нашли, что ДМА и ДМФ как экстрагенты лучше [15]. Несколько последовательных экстракций при 140°С (каждая по 3 мин) ДМФ и ДМА, содержащими нелетучую кислоту (л-толуолсульфокислоту) и ингибитор свободных радикалов обеспечивает эффективное удаление неионных красителей нз хлопка и его смесей с полиэфирными, полиамидными и акриловыми волокнами. Последние, а также волокна из диацетата целлюлозы растворяются при экстракции. Обработка горячей водой или даром для предварительного набухания целлюлозных волокон облегчает их экстракцию, но обычно не обязательна. Некоторые аппретуры замедляют экстракцию красителя из хлопка и требуется модификация метода, либо растворение целлюлозного волокна в кадоксене или серной кислоте. [c.536]

    Химическая модификация полиамидов с целью придания огнестойкости довольно перспективна, так как позволяет наряду с устойчивыми огнезащитными свойствами получать неплавкие волокна. Исследования в этом направлении начаты сравнительно недавно, но уже накоплен определенный экспериментальный материал как по химизму процессов, так и по изучению свойств огнестойких полиамидных материалов. [c.383]

    Монография, являющаяся пятой книгой из серии Химические волокна , посвящена химии и технологии производства полиамидных волокон. В ней рассматриваются синтез волокнообразующих полиамидов и их свойства, процессы формования и последующей обработки получаемых нитей, применяемое технологическое оборудование приводятся сведения о свойствах и модификации полиамидных волокон. [c.4]

    Если до 1940 г. выпускались только вискозные, медноаммиачные и ацетатные волокна, то в настоящее время в больших количествах производится более 10 видов химических волокон. Среди них такие широко известные волокна, как полиамидные, полиэфирные, полиакрилонитрильные, полипропиленовые и другие. Благодаря использованию новых методов формования, вытягивания, термообработки и модификации в последние годы значительно увеличился также ассортимент волокон каждого вида. [c.7]

    Образование поперечных химических связей (сшивок) между макромолекулами или элементами надмолекулярной структуры волокна. Этот метод, широко используемый в химии и технологии полимеров (в частности, при превращении каучука в резину), применяется и для модификации свойств некоторых химических волокон. Например, производство поливинилспиртового волокна, устойчивого к многократным водным обработкам, основано, как правило, на образовании ацетальных связей между макромолекулами поливинилового спирта. Метод образования поперечных химических связей между макромолекулами применяется при производстве неплавких полиамидных волокон, для получения несминаемых изделий, изготовляемых из сшитого вискозного волокна. [c.164]


    Формование по методу охлаждения расплава обозначено на этой диаграмме отрезком пути I. Расплав (100% П), нагретый до температуры Г сх при понижении температуры проходит последовательно температуру кристаллизации температуру текучести (которая типична для медленно кристаллизующихся полимеров), температуру стеклования 7 с и достигает температуры готового волокна Гц. В точке Г.ц, кристаллизация либо совсем не протекает, либо протекает частично (обычно с образованием несовершенных кристаллических модификаций) в зависимости от типа полимера и скорости понижения температуры при формовании. При достижении точки Г ек жидкая нить фиксируется (если еще но успела произойти кристаллизация), поскольку в этой точке вязкость системы достигает упомянутого критического значения т р. Дальнейшее понижение температуры приводит к стеклованию полимера Т с), если температура стеклования лежит выше Это случай, характерный для формования полиамидных или полиэтилентерефталатных волокон. Но, если температура стеклования лежит ниже Г,,, волокно должно обладать в обычных условиях высокоэластическими свойствами. Этот случай [c.173]

    Химическая модификация полиамидных волокон включает получение привитых сополимеров и сщитых структур. С помощью привитой сополимеризации найлона-66 с окисью этилена повышают эластичность и гигроскопичность волокна. Использование радиационной сополимеризации приводит к улучшению окрашиваемости и гидрофильности. В данном случае реакции сополимеризации протекают в аморфных областях, полиамида, которыми и определяются эти свойства. Такие свойства, как. прочность и жесткость, являющиеся функцией кристаллической структуры волокна, остаются неизменными. [c.337]

    Недостатком в развитии отрасли является небогатый внутривидовой ассортимент выпускаемой продукции. Важнейшим преимуществом химических волокон перед натуральными является возможность выпуска продукции со специальным комплексом свойств, в наибольшей степени отвечающих требованиям различных потребителей. Для удовлетворения этих требований ведущие фирмы, производящие химические волокна, вырабатывают волокна, различающиеся не только номером филамента, числом филаментов в нити, цветом, выпускной формой, но и модификацией свойств. Так, например, в США семейство вискозных волокон насчитывает 50 видов, полиамидных — 100, полиакрилонитрильных и полиэфирных — по 35 видов. Компания Дюпон с учетом номеров выпускает 1100 видов и сортов найлона. Конечно, такое положение в какой-то мере связано с конкурентной борьбой между производителями волокна, однако в основном здесь сказывается требование наиболее полно удовлетворить рынок. [c.86]

    Наиболее пригодными для изготовления объемной пряжи или нитей являются волокна, легче всего поддающиеся тепловой модификации, т. е. характерзуемые низкими величинами межмолекулярного взаимодействия и жесткости цепей. В то же время стойкость объемного эффекта при носке изделий сохраняется только тогда, когда межмолекулярное взаимодействие или жесткость цепей достаточно высоки. Поэтому для получения объемной пряжи или текстурированных нитей пригодны в первую очередь полиамидные, полипропиленовые, полиакрилонитрильные, полиэфирные и другие термопластичные волокна. [c.406]

    Оба класса красителей, особенно сернистые красители, до сих пор мало применяются для окрашивания требуются вe ь i i концентрированные и поэтому сильнощелочные растворы красителей, которые окрашивают полиамидные волокна иначе, чем другие волокна. Насколько красители ряда нафтола получат большее значение, в настоящее время еще трудно предсказать. Возможно, удастся путем создания новых или модификации известных методов крашения расширитг возможности их применения. [c.382]

    При смешении полиамида 6 с 10% циануровой кислоты в пластометре Брабендера при 235°С в атмосфере азота вязкость полимера сильно уменьшается [212], при этом снижается и температура плавления. Поскольку благодаря циануровой кислоте в структуре полимера появляются дополнительное количество аминогрупп, такие продукты с успехом могут быть использованы для последующих химических превращений. Обработка полиамида 6 ненасыщенными альдегидами приводит к увеличению термостойкости и адгезии. Полиамид 6, содержащий 2—аминоспирта, характеризуется особенно высокой адгезией к стеклу и используется в производстве стеклопластиков [213]. Существует ряд патентов, в которых содержатся сведения о модификации полиамидов, в том числе и полиамида 6, различными полиаминами [214], Количество использованного полиамина колеблется от 1 до 10%. Модификация возможна либо в процессе поликонденсации, либо при последующем экструдировании. Благодаря этому можно добиться увеличения содержания аминогрупп вдвое. Варма и сотр. [215] осуществили модификацию полиамида 6 органохлорсилана-ми. Полиамидное волокно может быть модифицировано обработкой иодхлоридом [216]. Ниже представлены некоторые свойства продуктов модификации и соответствующие реагенты  [c.141]

    По-видимому, рассматриваемый метод модификации более перспективен в случае смешения полиамидов с полимерами карбоцепного ряда. В работе [14] описан способ получения полиамидных волокон из смеси поликапроамида с сополимерами ка рбоцепного ряда (сополимеры акрилонитрила со стиролом, метилакрилатом, метилметакрилатом и винилпиридином). Сополимеры вводились в расплав поликапроамида перед формованием волонна в количествах 1,0—5,0% (масс.). Большие добавки приводили к ухудшению прядомости расплава. Полученные смешанные полиамидные волокна имели такие же физико-,механические свойства, как капрон, но лучшую тепло- и светостойкость. [c.225]

    При формовании из расплава и последующих ориентационных процессах было установлено, то кристаллизация из расплава как при быстром, так и при медленном охлаждении приводит к образованию кристаллитов только а-формы. При высоких степенях вытяжки такого полимера в условиях умеренной температуры 1<ристаллиты а-формы полностью исчезают и образуются только кристаллиты р-формы. При отжиге под натяжением при 150° С происходит повышение ориентации и совершенствование кристаллитов р-формы без появления а-кристаллитов. Попытка получить образец, содержащий ориентированные кристаллиты а-формы, путем нагревания под натяжением при температуре 165° С (температура плавления кристаллитов р-формы равна 165° С, а-формы — около 170° С) удается лишь частично. Ориентированные а-кристаллиты образуются лишь в том случае, когда сохраняются высокоориентированные В-крпстал-литы. В противном случае образцы содержат лишь беспорядочно расположенные а-кристаллиты. При холодной вытяжке а-кристаллиты, оси которых расположены параллельно направлению приложенного усилия, первыми превращаются в р-форму. Это означает, что, как и в случае, описанном в предыдущей главе для полиамидного волокна, превращение из одной кристаллической модификации в другую происходит только после полной ориентации первичной формы кристаллитов вдоль оси волокна что требует вытяжки на 200—250% (с учетом частичного течения волокна). [c.266]

    Для оценки зависимости прочности от ориентации может быть исп( ль-зован и другой подход. Только что рассмотренная модель строения полимера предусматривала сочетание аморфных и кристаллических участков полимера. Но можно представить себе, что такого чередования в полимере нет. Это относится, например, к слабо или медленно кристаллргзующимся в процессе формования волокон полимерам (целлюлоза, полиэтилентерефталат) или к полиамидным волокнам с кратностью вытяжки более 2—2,5, когда исходная кристаллическая структура разрушается и при последу-юш,ей ориентации начинает возникать новая кристаллическая модификация. В таких случаях правомерно рассматривать упрочнение при ориентации не как перестройку слабых участков, а как результат изменения соотношения между количеством разрушаемых при разрыве основных (химических) связей в цепи полимера и количеством распадающихся при этом межмолекулярных связей, причем это соотношение должно [c.282]

    Процесс деформации сопровождается не только ориентацией сегментов макромолекул пли кристаллитов в направлении приложенных усилий, но и изменением межмолекулярных взаимодействий, что отражается на физико-механических свойствах полимера. Согласно Липатову [50], на начальных стадиях деформации происходит возрастание объема растянутого полимера, которое указывает на разрыв в результате деформации части связей между молекулами полимера. Такой разрыв приводит к увеличению среднего расстояния между звеньями соседних полимерных цепей. В работе Уэйтхема и Герроу [53] было показано, что при растяжении целлюлозных волокон до удлинения 5 /о энтропия возрастает, что связано с разрушением исходной структуры волокна до того, как начинается собственно ориентация. Аналогичные представления возникли при исследовании ориентации полиамидных волокон Б зависимости от степени деформации [54—56]. На определенной стадии деформации авторы наблюдали появление такой структурной модификации, которая свидетельствует о разрушении кристаллитов. Дальнейшая деформация приводит к выпрямлению участков цепей и нх ориентации в направлении растяжения. Этот процесс создает предпосылки для установления нового порядка в расположении цепей, которое при благоприятных условиях может привести к равновесию, характеризующемуся повыиленнем плотности упаковки. [c.77]

    В зависимости от назначения химические волокна и нити поступают к потребителю в разнообразных модификациях. Несмотря на взаимозаменяемость, каждый основной тип имеет свои области применения, где использование их отличается наибольшей эффективностью. Самыми универсальными являются полиамидные и полиэфирные волокна и нити. Их широко применяют в производстве как товаров широкого потребления (одежда, ковры, декоративные материалы и т. п.), так и изделий технического назначения (кордные ткани, канатно-веревочные изделия, фильтровальные материалы, ткани с покрытиями и др.). Тем не менее наиболее крупным потребителем полиамидных волокон и нитей является производство ковровых изделий (особенно напольных покрытий), полиэфирных—тканей различного типа (хлопко-, льно-, шерсто- и шелкоподобных) и осново- [c.144]

    В настояшее время в мире широко обсуждается проблема развития производства вискозных штапельных волокон. Это связано, с одной стороны, с быстрым ростом производства конкурирующих синтетических штапельных волокон, с другой — с существенным прогрессом в повышении качества вискозного штапельного волокна (появлением высокомодульных и полинозных волокон, приближающихся по своим свойствам, а по ряду показателей превосходящих лучшие сорта хлопка). Полиэфирные, полиакрилоннтрильные, полиамидные, штапельные волокна, как уже отмечалось выше, практически вытеснили вискозное штапельное волокно из смесок с шерстью. Но преимущества вискозного штапельного волокна, особенно его последних модификаций — высокомодульного и полинозного волокон, перед синтетическими волокнами в хлопчатобумажном ассортименте изделий (сорочечные и платьевые ткани. [c.184]

    Введение в макромолекулу полимера химически присоединенного антистатика — наиболее перспективный путь к улучшению потребительских свойств синтетических волокон вообще и полиамидных в частности. В работе [169] исследована химическая модификация поликапроамидного (ПКА) волокна — присоединение к макромолекулам полиамида четвертичных солей поли-2-метил-5-винилпиридина (ПМВП). Модифицированные ПКА волокна содержали четвертичные соли ПМВП в различ-128 [c.128]

    Акрильные волокна были неизвестны до 1948 г. и приобрели большое значение после внедрения в производство в 1953 г. орлона 42. Производство акрильных и модифицированных акрильных волокон, различающихся по содержанию полиакрилонитрила (более 85 и 35—85% соответственно) достигло в настоящее время объема 800 тыс. т. Производство других синтетических волокон, модификации полиамидного и полиэфирного волокон (например, полиэфиров, способных окрашиваться как кислотными, так и основными красителями), а также тенденция к увеличению исполь- [c.1678]

    Разработаны и другие методы выделения красителей из пищевых продуктов и лекарственных препаратов. Так, например, образец кипятят вместе с волокнами шерсти в кислотном растворе, при этом краситель закрепляется на шерсти [31]. Далее шерсть отделяют, промывают и элюируют краситель раствором аммиака. При использовании этого метода краситель может вступать в реакции, и его извлечение может не быть количественным. Давидек [32, 33] адсорбировал краситель из водного раствора на полиамидный порошок. Сахара, гликоли, органические кислоты, этанол не препятствуют адсорбции красителей, а большинство природных антоцианов не адсорбируется. Адсорбированные антоцианы можно удалить промывкой 10 %-ным раствором уксусной кислоты в метаноле, проводимой до элюирования смесью метанола и 25 %-ного аммиака (19 1). Леман и др. [34] описали свою модификацию этой методики в применении к различным пищевым продуктам. Джилхулей и др. [35] провели дальнейшее усовершенствование методики, с тем чтобы ее можно было использовать для количественных определений. Пищевые продукты были разделены на три группы, и к каждой из групп был применен свой метод обработки. Образцы таких продуктов, как джемы, желе и конфеты, которые полностью растворимы в воде, растворяли, нагревая 5 г продукта в 50 мл воды. Полученный раствор пропускали через заполненную полиамидом колонку (15x20 мм), после чего через колонку пропускали шесть порций воды по 10 мл и три порции ацетона по 5 мл. Красители элюировали минимальным объемом смеси ацетон—вода—аммиак (уд. масса 0,88) (40 9 1). Аммиак удаляли током воздуха, причем объем раствора уменьшали вдвое, а затем опять доводили до первоначальной величины и подкисляли раствор соляной кислотой до pH 5—6. Подкисленный раствор вновь пропускали через заполненную полиамидом колонку (10x20 мм) и промывали 5 порциями горячей воды по 5 мл каждая. Далее элюировали красители ацетоно-аммиачным раствором, выпаривали элюат почти досуха, остаток растворяли в нескольких каплях 0,1 н. соляной кислоты и затем подвергали тонкослойному хроматографированию. Если в исследуемом об- [c.12]

    Получение окрашенных волокои из цветных полиамидов является одним яз примеров практического использования химической модификации полиамидных волокон [16]. Окрашенные этим способом волокна по сравнению с паверхностно-окрашнваемыми волокнами отличаются большей устойчивостью окраски к мокрым обработкам, поту и трению. Цветные полиамиды можно получать несколькими методами синтезом полиамидов с реакционноспособными группами, способными химически связывать красители при крашении готовых волокон путем использования при синтезе полиамида цветного сополимера или регулятора молекулярной массы и, наконец, введением активного красителя в расплав полиамида перед формованием волокна. [c.226]

    Для повышения огнестойкости полиамидных нитей могут быть использованы методы, применяемые для целлюлозных волокон. Это поверхностная отделка тканей, добавки антипиренов к полимеру перед формованием волокна и химическая модификация готового волокна. Поверхностная отделка тканей не придает материалу устойчивой огнестойкости. Добавки, вводимые в полимер, не вымываются при обработке, но полученные волокна плавятся. Сохраняет свою актуальность проблема химической модификации готового волокна, которая наряду с огнезащитой дает возможность получения неплавкого материала. [c.372]

    Более перспективны методы модификации, основанные на прививке к капрону и другим полиамидным волоннам карбоцепных полимеров. Было показано [7], что путем прививки к капроново1му волокну полиакриловой или полиметакриловой кислоты могут быть получены карбоксилсодержащие катионообменные волокна. Эти волокна обладают высокими постоянными ионообменными свойствами и способны поглощать катионы магния, цинка, кадмия, марганца и меди. Они отличаются повышенной гигроскопичностью и меньшей по сравнению с капроном электризуемостью [9]. Прививка карбоцепных полимеров может [c.223]


Смотреть страницы где упоминается термин Полиамидные волокна модификация: [c.336]    [c.192]    [c.15]    [c.301]    [c.164]    [c.104]   
Физико-химические основы технологии химических волокон (1972) -- [ c.366 ]




ПОИСК





Смотрите так же термины и статьи:

Полиамидные волокна



© 2025 chem21.info Реклама на сайте