Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Удлинение волокна упругое

    Эластичность волокна характеризуется отношением обратимого удлинения, обусловленного упругой и эластической деформацией, к общему удлинению. Устойчивость к действию многократных деформаций определяется числом двойных изгибов волокна до его разрушения. [c.442]

    Общее удлинение волокна при приложении нагрузки Al состоит н < трех частей упругого удлинения А/у, высокоэластичного удлинения А/э и пластичного удлинения Alu- [c.23]


    Скорости релаксации процессов ускоренно-эластической и упругой деформации почти совпадают. Оба эти типа деформации составляют наиболее важную часть суммарного удлинения волокна. Замедленно-эластические деформации, протекающие в течение длительного времени, приближаются по практическому значению к необратимым пластическим деформациям. В большинстве случаев замедленно-эластические деформации, выявляющиеся в изделиях, получаемых из не вполне отрелаксированных волокон, нежелательны и приводят к усадке изделий. Поэтому максимально возможная релаксация в процессе производства волокна или изделий имеет большое значение для уменьшения последующей усадки. Применение безусадочных тканей для изготовления изделий народного потребления является одним из существенных мероприятий повышения их потребительской ценности. [c.110]

    Общий вид таких кривых для гидратцеллюлозных волокон приведен на рис. 29. Часть кривой АБ соответствует упругому удлинению волокна, БВ — ускоренно-эластической деформации, ВГ — замедленно-эластической и пластической деформациям. При изменении условий определения (температуры или влажности волокна) соотношение между отдельными компонентами, определяющими суммарное удлинение волокна, может изменяться. [c.133]

    Иногда определяют так называемую разрывную крутку — число кручений, выдерживаемых нитью до разрыва. При кручении нить подвергается продольному растяжению, поперечному сжатию и сдвигу. При прочих равных условиях (толщина нити, количество волокон и т. п.) способность нити противостоять деформациям, возникающим при кручении, зависит от величины удлинения и упругости волокна (нити). [c.41]

    Соотношения упругих и пластических удлинений волокна энант при разных нагрузках приведены в табл. 73. [c.452]

    Обычные вискозные текстильные нити характеризуются средними величинами кристаллитов, сравнительно высокой кристалличностью и низкой ориентацией. Высокомодульное (ВВМ-волок-но) и, особенно полинозное волокно, имеют большие размеры кристаллитов, достаточно высокую кристалличность и высокий показатель ориентации. Все это предопределяет высокую прочность и модуль упругости по сравнению с обычными вискозными нитями. При производстве вискозных кордных нитей условия формования подбирают таким образом, что нити обладают мелкокристаллической структурой, умеренной степенью кристалличности и высокой ориентацией. Это позволяет достичь наряду с высокой прочностью хороших эластических свойств. Экстремальными свойствами характеризуются волокна ВХ и фортизан. Высокие значения кристалличности и ориентации наряду с большой прочностью- и низким удлинением позволяют предположить наличие большого числа проходных цепей в фибриллах этих волокон. [c.212]


    Троцесс термофиксации по продолжительности совпадает с временем отгонки С 2. Для достижения низкого удлинения и повышенного модуля упругости, требуемых для волокна типа хлопка, термофиксацию необходимо проводить под натяжением. При создании прежних агрегатов, например ША-25-ИР, это требование не учитывалось и довосстановление и термофиксацию на этих агрегатах осуществляли в свободном состоянии, что ограничивало возможность производства на них волокна типа хлопка. [c.283]

    Текстильные волокна, металлическая проволока, применяемые в качестве армирующих материалов, по модулю упругости во много раз превосходят резину удлинение обычного текстильного корда при разрыве составляет 10—25%, удлинение большинства резин— 500% и более. Текстильные ткани и нити входят в конструкцию многих резиновых изделий—автомобильных авиационных, тракторных, сельскохозяйственных, мотоциклетных, велосипедных и других шин, конвейерных и транспортерных лент, приводных ремней, рукавов и шлангов, резино-пневма-тических рессор и муфт, резиновой обуви и многих других изделий и деталей. Выпускаются также различные изделия из прорезиненных тканей. [c.502]

    Из дифференциального уравненин дпя определения изогнутой оси образца получали выражение для истинного максимального его прогиба, по которому определяли относительное удлинение волокна максимально Уваленного от нейтральной линии. По пересечению линии упругого деформирования металла при статическом нагружении (рис. 15, кривая /) с участками, соответствующими неупругому приращению, полученными при циклическом нагружении в воздухе (кривая 2) и среде (кривая 3) с удовлетворительной точностью можно определить циклический предел пропорциональности. Величина циклического предела пропорциональности, по-видимому, является наиболее близкой к пределу выносливости механической характеристики металла, которая в данном случае указывает на переход от упругого к неупругому деформированию, т.е. однозначно определяет напряжения, при которых начинается процесс накопления необратимого усталостного повреждения. [c.40]

    При использовании в качестве усиливающих материалов стеклянного волокна в виде ровницы, матов, тканей в механизме упрочнения большую роль играет структура армирующего материала, его прочностные свойства и ряд технологических факторов [1]. Однако эффекты усиления и в этом случае не могут быть сведены к чисто механическим факторам без учета роли связующего. В таких системах связующее обеспечивает равномерность нагружения и одновременность работы всех волокон в армированном полимере, склеивает волокна и защищает их от воздействия внешней среды [6]. В этом случае первостепенное значение имеют процессы адгезионного взаимодействия полимера и наполнителя. Усиление при использовании однонаправленного армирующего материала может быть объяснено следующим образом [6]. В процессе приложения нагрузки волокна удлиняются и одновременно испытывают поперечное сжатие. При деформации в клеящей среде волокно при поперечном сжатии должно по всей поверхности оторваться от окружающей его пленки или растянуть ее. Таким образом, удлинение при растяжении вызывает в плоскости, перпендикулярной приложенной силе, растягивающее напряжение, препятствующее удлинению волокна. Это напряжение определяется адгезией смолы к поверхности и свойствами самой клеящей среды. Таким образом, при деформации для разрушения структуры необходимо преодолеть не только суммарную прочность армирующих волокон, но и силы, препятствующие поперечному сжатию, которые тем больше, чем прочнее адгезионная связь и чем больше упругие свойства клеящей среды. При этом предполагается, что смола сильно упрочняется в тонких слоях. [c.274]

    Аналогично, отношение энергии, необходимой для мгновенноупругого удлинения к энергии, затраченной на полное удлинение, можно обозначить термином энергетический индекс упругости . На рис. 11 показано изменение значения этих индексов с увеличением общего удлинения волокна. [c.113]

    Обозначим эту деформацию (относительное удлинение е/Хо)е, а площадь поперечного сечения элемента конструкции, подвергающегося действию этих напряжений, А. Величина А складывается из площади поперечного сечения волокон Л/ и матрицы Л, . Тогда сила, необходимая для удлинения волокна Р = гЕ Ат, а для удлинения матрицы Рщ еЕтАт и для удлинения всего элемента конструкции P = Pf + Pm = B(EfAf + E,nAm)- Жесткость при растяжении элемента конструкции (сила, отнесенная к единице деформации) равна Pk = EjAf + E iAm- Модуль упругости при растяжении материала (напряжение, отнесенное к единице деформации) равен  [c.185]

    Высокоэластичное удлинение волокна связано с изменением формы макромолекулы. Эта деформация, характерная только для высокомолекулярных соединений, также обратима, но в отличие от упругой деформации, исчезновение ее после снятия напрузки с волокна происходит не мгновенно, а в течение некоторого времени (от нескольких секунд до нескольких дней). [c.24]


    По основным показателям — прочности, удлинению, модулю упругости, сорбции водяных паров — сиблон и полинозное волокно приближаются к хлопку. Замена хлопка этими волокнами оказалась экономически оправданной. На базе разработок ЦНИХБИ в текстильной промышленности был накоплен опыт по переработке волокна сиблон и полинозного волокна в смеси с хлопком соответственно в количестве 33 и 45 %. Ниже рассматриваются основные особенности технологии переработки волокна при выработке пряжи, в ткачестве, при отделке и крашении. [c.115]

    При одноосном растяжении упругого образца (блока, стержня, волокна) происходит его обратимое удлинение (см. рис. 3.3, в-1), описываемое законом Гука  [c.127]

    Обычно длина заготовки Lo для изготовления обечаек рассчитывается по среднему диаметру Дер Lo = яДср = 7г(Дв + S). Однако, в силу различия сопротивления упруго-пластическому изгибу сжатых и растянутых зон, особенно для толстостенных и биметаллических заготовок, происходит смещение нейтральной линии (разделяющей растянутые и сжатые волокна) относительно срединной. В результате этого, в некоторых случаях, периметр обечайки L может заметно отличаться от значения Lo L = Ку Lo, где Ку - коэффициент укорочения или удлинения периметра обечайки. [c.173]

    Свойства. Линейная плотность нитей составляет 5,7-22,2 (чаще 8,3-11,1) текс, жгутов-ок. 5200 текс (элементарного волокна-0,36 текс). Прочность нитей-10-14 сН/текс, относит. удлинение-20-40%, модуль упругости (прн относит, влажности воздуха 65%)-3-4 ГПа (в мокром состоянии-соотв. 7-8 сН/текс, 30-50% н 1,2-2,0 ГПа). Прочность нитей, полученных мокрым формованием из конц. р-ров (выше 30%-ных) в смеси F3 OOH н Hj lj, достигает 30-40 сН/текс при относит удлинении 6-10% н начальном модуле упругости 13-15 ГПа. Электрнч. характеристики A.B. р 10 Ом-см, е 5, tgS 0,08. [c.226]

    Керамика характеризуется низкой прочностью при растяжении в сочетании с высоким модулем Юнга, низкой ударной вязкостью. При высоких температурах одной из причин вьтхода из строя изделий из кера.мики является растрескивание. Это создает большие трудности при армировании ее волокнами, поскольку- недостаточное удлинение матрицы препятствует передаче нафузки на волокно. Поэтому волокна должны иметь более высокий модуль упругости, чем матрица. Ассортимент таких волокон ограничен. Обычно используют металлические волокна. При этом сопротивление растяжению растет незначительно, но существенно повышается сопротивление тепловым ударам. В зависимости от соотношения коэффициента термического расширения матрицы и волокна возможны случаи, когда прочность падает. [c.158]

    Поскольку модули упругости наполнителя и матрицы сильно различаются, для обеспечения монолнтности пластика необходимы полимерные матрицы, значения предельных удлинений которых значительно превышают среднее удлинение композиционного материала при сохранении достаточных значений прочности. Особое значение имеет прочность при сдвиге, так как именно малая прочность при сдвиге между слоями является одним из основных недостатков армированных пластиков. При этом предполагается, что адгезионная прочность превосходит прочность полимера, т. е. разрущения по границе раздела ие происходит. Напряжения и деформации для квадратичной и гексагональной укладки волокон [1, 6, 22—26] являются функцией отнощения модулей наполнителя и матрицы и плотности упаковки волокон. Если считать, что полимерная матрица и наполнитель подчиняются закону Гука, то при объемной доле волокна от 0,6 до 0,75 отнощение предельных удлинений изменяется от 5 до 15 [26]. Если же учитывать нелинейное вязко-упругое поведение полимерной матрицы, то это отнощение еше больше возрастает. Увеличение предельной деформации связующего за счет снижения его модуля упругости и прочности, как это происходит при пластификации, не приводит к повышению прочности пластика, так как прн уменьшении модуля упругости матрицы ее предельное удлинение, необходимое для сохранения монолитности, возрастает. Таким образом идеальное связующее должно обладать большим удлинением при высоких значениях модуля упругости и прочности, особенно при сдвиге. В работе [22] приведен расчет показателей такого идеального связующего, наполненного ( 1 = 0,7) бесщелочным стеклом и высокомодульным стеклом ВМ-1 (табл. 8.1). Ни одно из известных эпоксидных связующих не отвечает полностьк> приведенным в таблице требованиям [22], однако они могут служить отправной точкой для сравнения различных эпоксидных композиций. [c.212]

    По объему производства вискозные волокна обычного типа в нашей стране занимают ведущее место. Увеличение производства этих волокон объясняется их высокими санитарно-гигиеническими характеристиками, меньшей стоимостью по сравнению с хлопком, а также дефицитом последнего. Вискозные волокна используют в чистом виде для производства штапельных тканей, а также в смесях с хлопком и шерстью при получении бельевых, плательных и костюмных тканей и трикотажного белья. Во многих странах практически во все хлопчатобумажные ткани и трикотаж в целях экономии хлопка добавляют до 10—20% вискозного волокна [27]. В табл. 8.3 приведены свойства основных видов вискозных волокон. Обычное вискозное волокно хлопкового типа выпускается с линейной плотностью 0,17—0,20 текс. Его прочность колеблется в пределах 22—25 сН/текс, потеря прочности в мокром состоянии достигает 45—50%. Удлинение не должно превышать 24%. Модуль упругости в мокром состоянии сравнительно низок и не превышает 30—40 сН/текс. Степень полимеризации обычно находится в пределах 300—320, однако в некоторых случаях снижается до 280. Эту величину следует рассматривать как нижний допустимый предел. Растворимость в 6%-ном растворе NaOH является критерием применимости данного волокна для выработки тканей, подвергающихся щелочным обработкам — мерсеризации, щелочной отварке и отбелке. У обычного штапельного волокна растворимость превышает 12% и может достигать даже 20—22%. Тем не менее, как уже отмечалось в работе [27], с целью удешевления тканей текстильная промышленность вынуждена использовать в качестве добавки обычное вискозное волокно и в тех случаях, когда ткани должны подвергаться щелочным обработкам. [c.278]

Рис. 8.15. Зависимость прочности (1), модуля упругости в мокром состоянии (2) и удлинения (3) от величины БЫтяжки высокомодульного волокна на воздухе. Рис. 8.15. <a href="/info/302022">Зависимость прочности</a> (1), <a href="/info/9035">модуля упругости</a> в <a href="/info/1001006">мокром состоянии</a> (2) и удлинения (3) от величины БЫтяжки <a href="/info/77476">высокомодульного волокна</a> на воздухе.
    Рис, 8.16. Зависимость прочности 1), удлинения (2) и модуля упругости в мокром состоянии высокомодульиого волокна (3) от температуры термофиксации. [c.290]

    Степень термофиксации определяли по изменению физико-механических показателей, плотности, кристалличности и показателю двойного лучепреломления волокна. Все эти показатели претерпевают заметные изменения в области температур 20—60°С и выше. Прочность волокна возрастает с 32,6 до 38,7 сН/текс удлинение изменяется экстремально, достигая максимального значения (17,5%) при 50 °С и снижаясь затем до 15,4 при 95 °С. Модуль упругости в мокром состоянии начинает заметно возрастать при 70 °С, увеличиваясь при 93 °С до 127 сН/текс. Одновременно происходят структурные изменения волокна. Показатель двойного лу--чепреломления возрастает с 0,0350 при 20 °С до 0,0380 при 60 °С плотность волокна возрастает с 1496 до 1512 кг/м , а кристалличность— с 31,4 до 48,8%. Приведенные данные указывают на большую значимость термофиксации в производстве высокомодульного волокна. Следует также отметить, что без термофиксации после резки усадка волокна достигает 20—25%, что помимо ухудшения качества волокна ведет также к снижению производительности машины для формования. [c.291]

    Введение резотропина приводит также к изменению ряда физико-механических показателей вулканизатов. Повышаются модули упругости и эластичность, улучшается сопротивление тепловому старению. Одновременно понижается разрывное удлинение и снижается выносливость при многократном растяжении 124-126 Избыток резотропина отрицательно влияет на механические свойства вискозного волокна. Оптимальным содержанием резотропина в смеси является 3—5 вес. ч. При конденсации резотропина не весь выделяющийся аммиак участвует в смолообразовании. Поэтому несколько более высокие результаты по прочности связи дает совместное введение в резиновую смесь резотропина с резорцином или 5-метилрезорцнном в соотношении 1 1. [c.207]

    Данные таблицы характеризуют сохранение волокнами предела прочности при рястя-жекнн (П). откоснтельного удлинения (У), модули упругости (М) и степени полимеризации (С) в процен1ах от исходной величины после пребывания в условиях среднеевропейского климата. [c.422]

    Волокно лавсан обладает достаточно высокой прочностью (40—65 ркм ири удлинении 30—10%), хорошей упругостью и высоким сопротивлением истиранию. Лавсан очень устойчив к действию высоких температур, света, к воздействию кислот и окислителей, но быстро разрушается горячими растворами щелочей. Из волокна лавсан в смеси с шерстью часто вырабатывают немну-щиеся ткани и трикотаж. [c.475]


Смотреть страницы где упоминается термин Удлинение волокна упругое: [c.206]    [c.376]    [c.164]    [c.376]    [c.326]    [c.348]    [c.132]    [c.223]    [c.209]    [c.73]    [c.236]    [c.111]    [c.454]    [c.459]    [c.464]    [c.470]    [c.569]    [c.14]    [c.432]    [c.288]    [c.290]    [c.236]   
Основы химии и технологии химических волокон Том 1 (копия) (1964) -- [ c.131 ]




ПОИСК







© 2025 chem21.info Реклама на сайте