Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоксильная группа блокирование превращением

    Эффект соседних звеньев заключается во влиянии прореагировавших функциональных групп в макромолекуле на реакционную способность соседних групп. В результате реакционная способность функциональных групп может изменяться с изменением степени конверсии. Примером такой реакции может служить щелочной гидролиз полиакриламида. Скорость гидролиза полиакриламида выше, чем акриламида, что объясняется содействием гидролизу амидных групп ближайших ионизированных карбоксильных групп (I). Однако при глубоких конверсиях может происходить блокирование амидных групп двумя ионизированными карбоксильными группами (П), что приводит к неполноте щелочного гидролиза полиакриламида (в обычных условиях степень превращения не превышает 70%) и замедлению скорости реакции  [c.109]


    Трипсин 21 расщепляет пептидные связи, в образовании которых участвуют карбоксильные группы лизина и аргинина. К гидролизу трипсином устойчивы связи лизина и аргинина с пролином (лиз—про и арг—про). Замедление гидролиза этим ферментом наблюдается тогда, когда остатки лизина и аргинина находятся рядом со свободными а-амино- и а-карбоксильными группами, а также в участках полипептидной цепи с повышенным содержанием основных аминокислот (связи ЛИЗ—лиз, арг—арг, лиз—арг и арг—лиз расщепляются только частично). Селективность расщепления трипсином можно повысить путем блокирования e-NH2-rpynn лизина (например, ангидридами янтарной, малеиновой или цитраконовой кислот) или же гуанидиновых группировок аргинина (дикетоновыми реагентами, такими как диацетил, циклогександион, фенилглиоксаль и др.). Гидролизу трипсином могут подвергаться связи, образованные и остатками цистеина, после превращения его в аминоэтилцистеин обработкой белка этиленимином. [c.140]

    Модификация, основанная на химических превращениях уже синтезированных макромолекул. Для ряда полимеров наличие концевых групп с подвижными атомами водорода обусловливает сравнительно легкое протекание деполимеризации и, следовательно, относительно низкую термостабильпость таких полимеров. Это делает необходимым блокирование концевых групп органическими радикалами, достаточно стабильными в условиях переработки и применения нолимера. Так, ацетн.пирование и,пи метилирование концевых ОИ-групи полиформальдегида повышает его те >моста-бильность ири глубоком вакууме и темп-ре 200 С в 8 — 10 раз. Блокирование концевых силанольных групп в полидиметилсилоксановых каучуках, гидроксильных и карбоксильных групп в простых и сложных ароматич. полиэфирах также повышает темп-ру разложения соответствующих матерх алов. [c.135]

    Из химических реакций, сопровождающих формирование покрытий из водорастворимых пленкообразователей, наиболее важными и характерными являются реакции с участием функциональных групп, не способных к самоконденсации. В первую очередь это относится к реакциям карбоксильных, гидроксильных и аминогрупп. Эти реакции, изменяя структуру полярной группы, приводят к уменьшению гидрофильности полимера, что определяет возможность использования водорастворимых пленкообразователей для получения защитных покрытий. Изменение структуры полярной группы может происходить в результате термической деструкции (в частности, реакции декарбоксилирования), ряда реакций полимераналогичных превращений— разложения соли и образования амидных групп, реакций функциональных групп пленкообразователя, приводящих к образованию пространственного полимера в результате возникновения межцепных ковалентных связей. Определяющим в реакциях отверждения является взаимодействие карбоксильных групп с другими реакционноспособными группами, приводящее к сшиванию и потере растворимости в воде, а также каталитическое воздействие карбоксильных групп на протекание многих из этих реакций. Входящие в состав поликатионных пленкообразователей аминогруппы в большинстве случаев являются третичными и не способны к реакциям нуклеофильного замещения. Для пленкообразователей такого типа наиболее характерны реакции изоцианатной группы, регенерированной в результате термического распада блокированных полиизоцианатов. Эти реакции протекают с участием функциональных групп, содержащих подвижный атом водорода, в том числе карбоксильной. [c.108]


    Возникло предположение, что включение СО2 в сукцинат происходит также в животных тканях, н для проверки этого предположения Вуд исследовал метаболизм препарата печени голубя при этом для блокирования сукцинатдегидрогеназы был добавлен малонат (дополнение 9-В). К удивлению исследователя накапливающийся сукцинат не содержал изотопа С. Вскоре, однако, было показано, что СО2 включается в карбоксильную группу а-кетоглутарата, смежную с карбонильной группой. При последующем превращении в сукцинат этот карбоксил утрачивается (рис. 9-2), что и объясняет отсутствие С в сукцинате. В историческом плане примечательно, что эти наблюдения были неправильно интерпретированы большинством биохимиков того времени. Они согласились, что цитрат не принимает участия в цикле трикарбоновых кислот. [c.322]

    Вследствие невысокой молекулярной массы водорастворимых пленкообразователей и наличия в их составе большого числа полярных групп требуется большая глубина превращения этих групп. Так, кислотное число обычных алкидных олигомеров не превышает 5—20 мг КОН/г, и одна карбоксильная группа приходится на 3000—10 000 единиц молекулярной массы, у водорастворимых алкидов при кислотном числе 50— 150 мг КОН/г одна карбоксильная группа приходится на 350—1000 единиц, т. е. число групп увеличивается в 5—10 раз. Поэтому необходимо не только достижение достаточно высокой степени сшивания, но и блокирование полярных групп для снижения гидрофильности покрытия. Глубина превращения функциональных групп и скорость этих реакций определяются температурным режимом отверждения. Даже в присутствии катализаторов, отверждающих и модифицирующих добавок химическое структурирование эффективно протекает лишь при достаточно высоких температурах и в течение длительного времени. Эти факторы определяют верхний температурный предел отверждения водорастворимых пленкообразователей, который не должен, безусловно, превышать температуру деструкции. [c.105]

    Другая возможность введения заместителей в карбоксильную группу — это образование амида или гидразида. Метод защиты путем амидообразования применяется сравнительно редко, поскольку селективное расщепление амидной группировки без разрыва пептидных связей, как и в случае Ы-защнт-ных групп ацильного типа, можно осуществить далеко не всегда. Превращение кислоты в гидразид также нельзя рассматривать как вполне удовлетворительный способ защиты карбоксильной группы, так как в процессе пептидного синтеза может происходить ацилирование гидразидной группировки. Правда, эта нежелательная побочная реакция предотвращается путем блокирования гидразидной функции введением Ы-защитной группы. В настоящее время приобретает все большее значение, особенно для синтеза высших пептидов, защита карбоксильной группы с помощью солеобразования. [c.87]

    Использование в подобных термодинамических расчетах известных из литературы оистаит стабильности Кц комплексов, моделирующих образующиеся в фазе смолы сорбционные комплексы, во многих случаях может оказаться неправомочным. Так, Стоксом и Уолтоном [58] было показано, что сорбция на сульфокислотных катионитах практически не сказывается на стабильности комплексов аммиака с ионами металлов. Напротив, карбоксильные катиониты значительно снижают их стабильность [58, 59] —для комплексов меди с аминами константы стабильности снижаются примерно в 20 раз. Тем не менее, частичное блокирование координационной сферы ионов меди стационарными карбоксильными группировками оказывается обратимым, и при достаточной концентрации аммиака реализуется максимально возможная лигандообменная валентность ионов меди, соответствующая образованию тетрааммиакатов [20]. Происходящее при этом вытеснение стационарных лигандов из координационной сферы меди, т. е. превращение ионно-координационных связей меди с карбоксильными группами в ионные связи, значительно снижает прочность удерживания металла стационарной фазой. Поэтому 1 М раствор ХаС104 начинает десорбировать ионы меди из карбоксильных катионитов, если подвижная фаза содержит еще и а.ммиак [60, 61] в достаточ1Ных колцент-рациях 2М). Для контроля за изменениями, происходящими в структуре сорбционного комплекса в зависимости от состава подвижной фазы, предложено использовать электронные спектры сорбента [61]. [c.20]

    Эта структура подтверждена полным синтезом (рис. 103), осуществленным Шемякиным и сотр. [2078а]. В этом синтезе для создания сложноэфирных связей применяли бензосульфохлорид-ный метод, а для образования амидных связей — хлорангидридный. С-Концевой остаток защищали превращением в бензиловый эфир, а для блокирования других карбоксильных групп применяли грег-бутиловые эфиры. В качестве N-защитной группы использовали бензилоксикарбонильный остаток. Линейные пептолиды и продукт циклизации (хлорангидридным методом) были очищены с помощью хроматографии на окиси алюминия. [c.520]


    Работы Вроблевского остаются одним из лучших примеров методов и логики определения структуры органического соединения. Он приготовил пять теоретически возможных монобромбензойных кислот, чтобы выяснить различия между ними. Исходным веществом для синтезов слуншл п-толуидин, метильная группа которого в дальнейшем определяла положение карбоксильной группы. Метод Вроблевского заключался во введении брома непосредственно или через нитрогруппу, а затем в использовании брома, нитрогрун-ны (или продукта превращения последней, нанример аминогруппы) или иода с целью блокирования одного или нескольких положений одновременно Б другое место молекулы вводили бром или заместитель, который можно заместить бромом, после чего все блокирующие группы заменялись на водород. Таким образом было блокировано сначала одно положение, затем первое и второе, далее первые два и третье и, наконец, первые три и четвертое. Из пяти конечных продуктов две пары оказались идентичными. Ладенбург до этого показал, что наличие двух нар эквивалентных положений для второго заместителя может служить строгим доказательством эквивалентности всех шести положений для первого заместителя. Так, три оксибензойные кислоты дают один и тот же фенол при декарбоксилировании и бензойную кислоту при восстановлении, а фенол можно превратить через бромбензол в бензойную кислоту. Таким образом было показано, что для первого заместителя четыре положения эквивалентны. Далее было известно, что две из оксибензойных кислот характеризуются тем, что каждая содержит гидроксил в одном из двух эквивалентных положений. Эквивалентность для второго заместителя должна сохраниться, когда первый замещается на водород, [c.156]

    Другим интересным случаем является реакция, в которой реагирующая группа дезактивируется наличием одной или двух соседних функциональных групп. Примером такой реакции может служить превращение поливинилпиридипа в четвертичную соль при действии н-бутилбромида в присутствии тетраметиленсульфона [99е, ж]. Кинетические закономерности этой реакции можно количественно объяснить [99з], предположив, что А 1 = 2 и (к 1кз) = 0,32. Крайний случай дезактивации функциональных групп продуктами реакции рассматривался выше на примере щелочного гидролиза полиметакриламида [45, 46]. В этой реакции амидный остаток между двумя ионизированными карбоксильными группами теряет способность гидролизоваться. Если принять для этого случая к1 = к и 3 = О, на основании теоретических положений [99в, г] можно предсказать, что примерно 35% общего числа амидных звеньев макромолекулы окажутся блокированными двумя карбоксильными группами и реакция гидролиза прекратится. [c.45]


Смотреть страницы где упоминается термин Карбоксильная группа блокирование превращением: [c.311]   
Пептиды Том 2 (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Карбоксильная группа

Карбоксильный ион



© 2025 chem21.info Реклама на сайте