Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константы аминами

    Рассмотрим одновременную абсорбцию двух газов, каждый из которых вступает в реакцию второго порядка с одним и тем же растворенным реагентом. Такой случай наблюдается, например, при абсорбции смеси СО2 и НзЗ раствором щелочи или амина. При растворении газов Л, и Лц их концентрации у поверхности А и Ли в общем случае будут различны, так же как и их коэффициенты диффузии О А, I и О А. II и константы скорости 2,1 и II взаимодействия этих газов с реагентом В. Локальные скорости реакции второго порядка будут к , аф и /гг, соответственно. Стехио- [c.55]


    Значения константы скорости kAm при температуре 25 °С для некоторых аминов представлены ниже  [c.247]

    Причина регенерации In- до InH — в пероксидном радикале, его восстановительной активности. Такой способностью обладают пероксидные радикалы алифатических аминов, вторичных и первичных спиртов. Величина коэффициента f зависит от отношения констант k jk", которое определяется структурой радикала In- и, возможно, зависит от среды. Иногда f превышает 100. [c.120]

Таблица 6.2. Константы скорости реакций пероксидных радикалов спиртов и аминов с соединениями металлов переменной валентности Таблица 6.2. <a href="/info/9216">Константы скорости реакций</a> пероксидных радикалов спиртов и аминов с <a href="/info/21041">соединениями металлов</a> переменной валентности
    Скорость реакции пропорциональна концентрациям свободной кислоты и амина (аммиака), которые определяются равновесием диссоциации соли. Константа этого равновесия растет с повышением температуры, чем и обусловлен выбор температуры амидирования. [c.222]

    Основной реакцией, обрывающей цепи окисления, является взаимодействие молекул антиокислителей, имеющих слабые связи О—Н и N—Н, с пероксидными радикалами. При этом активный пероксидный радикал заменяется на радикал ингибитора (1п ), не способный продолжать цепи окисления [5]. Взаимодействие фенолов и ароматических аминов с пероксидными радикалами протекает с очень высокой скоростью. Константа скорости этой реакции на два порядка выще, чем реакции взаимодействия антиокислителя с алкильными радикалами. От активности радикала ингибитора (1п) во многом зависит эффективность ингибирующего действия антиокислителя. Одним из [c.356]

    Гетеролитическая рекомбинация изучена в газовой фазе на примере реакции ВРд с аминами. Как видно из приведенных ниже данных, величины констант скорости всего на один-два порядка отличаются от факторов соударений, т. е. процесс идет практически без активационного барьера [c.104]

    Константы скорости для реакции ВРз с аминами при 25 С, л/моль-сек [c.104]

    Величина р является константой в ряду однотипных реакций и различна для реакций разного типа. Она характеризует чувствительность данной реакции к изменению электронной плотности на реакционном центре. Например, для щелочного гидролиза замещенных этилбензоатов в 85%-ном этаноле р = 2,6, следовательно, реакция существенно ускоряется с ростом а, т. е. с уменьшением электронной плотности на реакционном центре (рис. 41). Это нетрудно понять, поскольку реакционный Центр этой реакции является электрофильным центром, который атакуется нуклеофильной частицей ОН". Наоборот, в реакции бензоилирования ароматических аминов. [c.128]


    Из уравнения (4.14) следует, что константы устойчивости координационных соединений при протекании экзотермических реакций с ростом температуры уменьшаются, а при протекании эндотермических — увеличиваются. Тепловой эффект образования многих важных координационных соединений не превышает 10,0... 15,0 кДж/моль, что может вызвать изменение в константе устойчивости не более чем на 0,1 логарифмической единицы при изменении температуры на 10°. Во многих случаях с этими изменениями можно не считаться. Большим тепловым эффектом (40 кДж/моль и более) сопровождаются экзотермические реакции образования многих аминных и некоторых других комплексов с нейтральными лигандами. Введение температурной поправки в таких системах может иметь уже существенный практический интерес. [c.74]

    Реакционная способность образующихся соединений неодинакова. Протонирование альдегида, присоединяющего протон к карбонильному кислороду, приводит к смещению в его сторону электронной плотности и оголению атома углерода. Это способствует основной реакции, связанной с передачей электронов от азота к углероду. Протонирование амина, напротив, тормозит реакцию, так как присоединение протона к атому азота затрудняет последующую передачу электронов углеродному атому альдегида. Одновременность реакций с участием различных форм, обладающих неодинаковой реакционной способностью, приводит к сложной зависимости скорости реакции от концентрации катализатора. Зависимость константы скорости рассматриваемой реакции от pH среды имеет вид колоколообразной кривой. [c.348]

    Записывают константы вещества, цвет и запах чистого вещества. Многие органические соединения обладают специфическим запахом, по которому при навыке можно определить, к какому классу они относятся (эфиры, фенолы, нитросоединения, амины и др.). [c.122]

    Ингибиторы, обрывающие цепи по реакции с пероксидными радикалами. К ним относятся фенолы, ароматические амины, аминофенолы, гидроксиламины, ароматические многоядерные углеводороды. Эффективность тормозящего действия этих ингибиторов зависит от константы скорости реакции с ROj- и стехиометрического коэффициента ингибирования / — числа цепей, которые обрывает один ингибитор очень часто 2 в соответствии со схемой торможения  [c.208]

    Константы скорости реакции перекиси бензоила с анилином и дифениламином описываются уравнениями, параметры которых приведены в приложении I. Вычислите отношение начальных скоростей взаимодействия перекиси бензоила с аминами при 25 °С, если исходное количество перекиси бензоила и аминов составляет соответственно а) 0,095 и 0,1 моля, б) 0,08 и 0,095 моля. [c.16]

    Типичное применение теории химической абсорбции основано на использовании данных о скорости массопередачн для оценки констант скорости довольно быстрых реакций. Это представляет особый интерес в катализируемых реакциях. Случаи такого типа могут быть найдены в серии статей Данквертса с сотрудниками [9—11] по каталитическому действию различных веществ на реакцию двуокиси углерода с водой. Скорость последней может увеличиваться иод действием катализаторов, так что реакция становится конкурентной с прямой реакцией между СО2 и ОН даже при довольно высоких значениях pH, таких, например, какие наблюдаются в буферных растворах. Джеффрейс и Буль [12] пришли к такому же заключению. В случае карбонизированных растворов амина величина pH настолько мала, что даже в отсутствие катализаторов реакция двуокиси углерода с водой значима (см. раздел 14.1). Неудивительно, что в этой реакции катализатор увеличивает скорость на порядки, как показано Астарита, Марруччи и Джойя [13], [c.164]

    В 1936 г. Д. М. Рудковский [2] вычислил по приближенному уравнению Нериста логарифмы констант равновесия реакций образования этиламина, пропиламина, изоамиламина, вторичного бутиламина и нормального бутиламина из аммиака и олефинов для интервала 25—300° С. Автор пришел к выводу, что прямой синтез этиламина из аммиака и этилена может быть осуществлен в указанном интервале температур с хорошими выходами, достигающими —50%, под давлением 100 атм и выше. Синтез пропиламина и более высокомолекулярных аминов также может быть осуществлен с выходами —100—50% даже при атмосферном давлении. [c.385]

    Хорошо известно, что высокомолекулярные амины могут экстрагироваться в виде ионных пар аммониевых солей с различными противоионами из водных растворов в среду, подобную хлороформу. Недавно селективная экстракция такого типа была положена в основу ряда аналитических методов [44, 47—51, 54, 58] и способов разделения [7, 52, 53]. Как уже упоминалось в разд. 1.3.1 и хорошо описано в обзорах Брендстрёма [11, 112], могут существовать чрезвычайно сложные равновесные системы с несколькими константами, которые зависят от структуры аниона, катиона и растворителя, а также от pH, ионной силы и концентраций. В результате физико-химических и аналитических исследований подобного равновесия установлено, что существует взаимосвязь между размером катиона и константой экстракции. Этот факт очень важен для МФК. [c.27]


    Константы скорости реакции К0г-+1пН. Фенолы и ароматические амины реагируют с пероксидными радикалами очень быстро — с константой скорости при 60 °С порядка 10 — 10 л/(моль-с). Представляет интерес выяснить, является ли такая высокая активность ингибиторов результатом слабой связи 1п—Н. Сравним константы скорости реакции двух реакций К02-+СНз0—ОН и КОг-Ч-СеНзСН(СНз)2, теплоты [c.101]

    Константа скорости реакции ингибитора с КОг- зависит от природы разрываемой 1п—Н-связи, (О—Н-связь фенола или N—Н-связь амина), от прочности 1п—Н-связи и от стерических препятствий, создаваемых объемными заместителями в о-положении. Чем прочнее 1п—Н-связь в ингибиторе, тем медленнее он реагирует с пероксидными радикалами. Для 2,6-ди-г/зег-бу-тилфенолов с разными заместителями в п-положении вшюл няется линейная зависимость между энергией активации и теплотой реакции (уравнение Поляни — Семенова) [177] Е = 8,2—0,072 <7, которая позволяет при известной В1пн найти Е, так как <7 = 368—/)1пн. Линейно связана с /)1пн и константа скорости реакции пероксидных радикалов с фенолами этого -ипа [177] [c.103]

    В ряде работ от.мечена высокая ингибирующая способность комплексов металлов. Гидроксихинолин слабо тормозит окисление углеводородов. Однако комплексы оксихинолина с Си, Со, Мп и Ni обладают сильным ингибирующим действием они обрывают цепи в окисляющемся этилбензоле с константами скорости 10=—10 л/(моль-с) при 60 С [312]. Окисление кумола тормозят, обрывая цепи, комплексы кобальта с диметилглио-ксимом [313]. Стеарат меди усиливает тормозящее действие фенил-р-нафтиламина, видимо, через образование комплекса с амином и продуктами его превращения [314, 315]. [c.197]

    Рассмотренные примеры показывают, что хелатообразователь связывается с ионом металла значительно сильнее, чем обычный родственный ему лиганд. Из данных табл. 20-8 можно видеть, что константы образования этилендиаминовых комплексов на 8-10 порядков (т.е. приблизительно в миллиард раз) больше, чем константы образования комплексов тех же ионов металла с лигандами ЫНд. Связь аммиака и аминных хела-тообразователей с металлом относится к одному типу в обоих случаях неподеленная пара электронов на атоме азота в аммиаке или амине взаимодействует с металлом. Различие в константах образования комплексов с ННз и этилендиамином является отражением повышенной устойчивости последних, обусловленной вхождением связывающихся атомов лигандов в одну хелатную молекулу. Эта повышенная устойчивость иногда называется хелатным эффектом. Однако цианидный ион СК (который связывается с металлом через атом углерода) характеризуется намного более сильным притяжением к металлам, чем азотный атом аминных лигандов. Как показывают данные табл. 20-8, константы образования для циа-нидньгх комплексов на 3-13 порядков величины больше, чем для соответствующих этилендиаминовых комплексов. [c.245]

    Реакция во многом сходна с этернфикацией. Она также обратима, но, по сравнению с этернфикацией, ее равновесие сильнее смещено вправо. Строение кислоты оказывает такое же влияние на термодинамику и скорость амидирования, как при этерификации (разветвление и удлинение углеродной цепи кислоты повышает константу равновесия, но снижает скорость процесса). Аммиак и особенно амины являются более сильными нуклеофильными реагентами, чем спирты, поэтому амидирование может протекать в отсутс вие катализаторов путем нагревания реагентов при 200— 300 °С в жидкой фазе. Удаление воды при использовании избытка аммиа<а (или амина) способствует достижению высокой степени конверсии. В отдельных случаях рекомендовано применять катализаторы кислотного типа, например AI2O3. [c.221]

    И B iTOM случае соотношение констант скоростей последовательных стадий реакции неблагоприятно для получения первичного амина, так как аммиак является более слабым основанием и иук-леофгльным реагентом. Оказалось, однако, что те же катализаторы кислотного типа вызывают межмолекулярную миграцию алки ьных групп, аналогичную ранее встречавшейся реакции пе-реальилирования ароматических соединений под влиянием хлористого алюминия. [c.279]

    Интересно отметить, что точки, соответствующие М, Ы-диметил-и N. Ы-дибутиланилинам (третичные амины), ложатся на прямую для пиридиновых оснований, что киррелируется с константами основности этих соединений (для пиридина К = 1,7- 10,для Ы, Г -диметиланилина К = 1,2 10- ). [c.100]

    Несмотря на то, что применение смолисто-асфальтеновых веществ (САВ) известно более ста лет, настоящий этап характеризуется значительными и возрастающими успехами [147, 148]. Ранее было известно, что они могут быть использованы для производства битумов, разновидностей нефтяного углерода, природных депрессаторов, для изоляции трубопроводов. Все эти области не учитывали специфических особенностей, разнообразных и ценных свойств САВ. В 1936 г. Черножуковым и Крейном была показана стабилизирующая роль САВ в окислении минеральных масел. Более поздними работами была выявлена стабилизирующая способность асфальтенов в процессах термо- и фотодеструкции, окисления углеводородов и синтетических полимеров [149—150]. Ингибирующими центрами САВ являются гетероатомы и функциональные группы, имеющие подвижный атом водорода (гидроксипроизвод-ные ароматических фрагментов, аминные и серусодержащие компоненты). Ингибирующая способность высокомолекулярных соединений нефти повышается с ростом их общей ароматичности, концентрации гетероатомов и функциональных групп. В зависимости от этих факторов константа скорости ингибирования может изменяться в широких пределах от ж 10 до 10 л/(моль-с). Ингибирующая активность асфальтенов на 1—2 порядка выше, чем смол. [c.347]

    Определение констант тушения триплетных состояний. Изучение констант тушения триплетных состояний удобно проводить в вязких растворах. При температурах, близких к комнатной, могут быть использованы растворы 1-бромнафталина в глицерине или полнэтиленгликоле. При низких температурах выбор растворителя более и ирокий. В качестве тушителя применяют соединения с тяжелыми атомами, кислород, парамагнитные стабильные радикалы, доноры электронов или атомов водорода. Весьма удобным объектом исследования являются соли уранила, флуоресценция которых тушится аминами, спиртами, анионами галогенов и многими другими соединениями. Чтобы выяснить статический или динамический характер тушения, необходимо провести параллельное исследование кинетики и интенсивности фосфоресценции в одних и тех же растворах и определить константы тушения, представив данные в координатах Штерна — Фольмера фо/ф—[Q] и То/т—[Q]. [c.115]

    Поскольку четыре микроскопические константы ионизации нельзя определить из кривых титрования, необходимо было использовать спектрофотометрпческий анализ в ультрафиолетовой области для группы R—S . р/< = 8,65 бетаиновой структуры цистеина (ионизация тиола в ирисутствии положительно заряженного атома азота) и р/( = 8,75 S-метилцистеина (ионизация аминогруппы в присутствии нейтрального атома серы) близки к значениям и 2 для диссоциации ио выше приведенным механизмам и свидетельствуют, что эти величины должны иметь близкие значения (табл. 2.1). Здесь надо вновь отметить важный вклад индуктивного эффекта и эффекта ноля, обусловливающих различие рКа этих соединений от рКа обычных алкилмеркаитанов и аминов. [c.43]

    Аммиак и амины являются более сильными основаниями, чем вода. Для количественной оценки силы оснований служит величина константы основности к (подобно константе кислотности К у карбоновых кислот и фенолов). Она определяегся способностью оснований (аминов) отрывать протон от воды и определяется из равновесия  [c.136]

    Скорость реакции ненасыщенного полимера с серой возрастает с повышением температуры (рис. 81), но даже при 140—1.50 эта реакция является весьма длительным [фоцессом. Для повышения скор(х ти вулкани зации требуется введение ускорителей, которыми могут служить окислы металлов (цинка, магния, свинца) и органические вещества — амины с константой диссоциации более 10 производные дитиокарбоновых кислот, ксантогенаты [c.245]

    На основании изложенного ясно, что константы кислотности и основности групп —СООН и —NH2 для аминокислот будут довольно малыми величинами. Например, для ампноуксусной кислоты 1,6-10 , а Л в = 2,5-10- . Для большинства карбоновых кислот и алифатических аминов эти константы равны соответственно- 10" и 10 .  [c.223]

    За исключением ионных гидроксидов, как, например, NaOH, уже содержащих ионы ОН , основания в результате реакции с водой образуют в растворе дополнительные ионы ОН . Сопряженные кислоты сильных оснований не могут быть более сильными, чем Н2О. К числу наиболее распространенных сильных оснований относятся гидроксиды и оксиды щелочных и щелочноземельных металлов. Слабые основания включают HjO, NH3, амины и анионы слабых кислот. Степень протекания реакции слабого основания с водой с образованием ионов ОН и кислоты, сопряженной основанию, определяется константой диссоциации основания (константой основности) К . [c.102]

    Ниже приведены в произвольном порядке константы основности (Кв) некоторых аминов. Укажите, какое значение Кв относится к каждому амину 1) диметиламину, 2) анилину, 3) л-нитроанилину, 4) л-хлор-анилину, 5) бензнламину, 6) л-толуидину. [c.188]

    При замещении галоида в 2,4-динитрохлорбензоле алифатическими аминами, казалось бы, должен был наблю даться рост скорости реакции по мере увеличения +/-эффекта в ряду заместителей СНз, С3Н,, 1-С4Но. На самом деле наблюдается обратное соотношение, что связано со стерическим экранирующим эффектом алифатических радикалов. Зависимость скорости замещения от величины пространственных констант представлена в табл. 17. [c.198]

    При рассмотрении различных комплексов платины (IV), отличающихся лишь природой координированных аминов, выяснилось, что равновесие амидореакции сдвигается в правую сторону в тем большей степени, чем более основными свойствами обладает амин в некоординированном состоянии. Например, этиленди-аминовые комплексы имеют в растворе более кислую реакцию,, чем аммиачные комплексы. Сравнение констант кислотной диссоциации диэтилендиамминодихлоро- и тетрамминодихлоросое-динений показывает, что здесь наблюдается отступление от этой закономерности. [c.140]

    Одним из примеров таких реакций, где одновременно имеют место и сольватационные эффекты, являются реакции Меншуткина, т. е. реакции моногалогенидных алкилов с аминами, которые проводятся в различных растворителях. Роль давления в изменении констант скоростей реакций Меншуткина, где исходные компоненты отличались по своей молекулярной конфигурации и, следовательно, реакции между ними обладали различными стерическими факторами, была изучена при 60°С и давлениях до 303,9 МПа в растворе ацетона. Из этих опытов выявилась четкая закономерность относительно ускорения реакции и пространственной затрудненностью ее осуществления. [c.190]


Смотреть страницы где упоминается термин Константы аминами: [c.12]    [c.77]    [c.102]    [c.112]    [c.40]    [c.278]    [c.74]    [c.115]    [c.310]    [c.200]    [c.523]    [c.128]    [c.282]    [c.196]   
Аналитическая химия серебра (1975) -- [ c.39 , c.41 , c.43 ]




ПОИСК







© 2025 chem21.info Реклама на сайте