Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цитозоль, определение

    Различают два вида диффузии веществ через клеточные мембраны — пасочную (без переносчика) и облегченную (с участием вещества- переносчика). При пассивной диффузии происходит произвольное движение веществ через поры (отверстия) в мембранах клеток или через липиды мембран. Через поры диффундируют многие продукты обмена (НдО, СО2, МНз и др ) также кислород. Поры имеются не только в плазматических мембранах клетки, но и в ядерных мембранах (рис. 28). Через эти поры внутрь ядра проходят белки, из которых образуются рибосомы, а также нуклеотиды, из которых синтезируются нуклеиновые кислоты. Из ядра в цитозоль клетки выходят рибосомы и отдельные виды нуклеиновых кислот. Жиры и жирорастворимые вещества, например витамины, проникают через клеточные мембраны благодаря их растворению в липидном слое этих мембран. При облегченной диффузии движение вещества через мембрану обеспечивается веществом-пере-носчиком. Переносчик либо вращается в мембране, либо образует канал только для определенного вещества, что создает возможность его диффузии по градиенту концентрации. Так транспортируются небольшие молекулы веществ, например ионы металлов и глюкоза, через клеточную мембрану в цитозоль. [c.75]


    Дыра в центре каждого комплекса (ядерная пора) представляет собой водный канал, сквозь который водорастворимые молекулы курсируют между ядром и цитоплазмой. Часто создается впечатление, что это отверстие закупорено большой гранулой, которая, как полагают, состоит из вновь синтезированных рибосом или других частиц, видимых в момент переноса в цитоплазму (см. рис. 8-20, Б). Эффективный размер поры в состоянии покоя был определен с помощью эксперимента, в ходе которого в цитозоль вводили различные меченые молекулы неядерного происхождения и измеряли скорости их диффузии в ядро. Оказалось, что малые молекулы (5 кДа и меньше) проникают в ядро с такой скоростью, что ядерную оболочку можно считать для них свободно проницаемой. Концентрация белка с мол. массой 17 кДа выравнивается между цитоплазмой и ядром за 2 мин для белка с мол. массой 44 кДа это происходит за 30 мин, а глобулярные белки, имеющие свыше 60 кДа, едва ли вообще проникают в ядро. Количественный анализ подобных данных подтверждает, что ядерный поровой комплекс содержит заполненный водой цилиндрический канал диаметром около 9 нм и длиной 15 нм (рис. 8-22). Эти размеры сравнимы с размером беспорядочно расположенных каналов, которые видны на некоторых электронных микрофотографиях. [c.25]

    Но синтез АТР-это не единственный процесс, идущий за счет энергии электрохимического градиента. В матриксе, где находятся ферменты, участвующие в цикле лимонной кислоты и других метаболических реакциях, необходимо поддерживать высокие концентрации различных субстратов в частности, для АТР-синтетазы требуются ADP и фосфат. Это означает, что через обычно непроницаемую мембрану должны проходить разнообразные субстраты. Обмен с цитозолем осуществляется с помощью ряда важных транспортных белков, встроенных во внутреннюю мембрану. Во многих случаях эти белки активно переносят определенные молекулы против их электрохимических градиентов, т. е. осуществляют процесс, требующий затраты энергии. Для ряда метаболитов источником этой энергии служит сопряжение с транспортом каких-то других молекул, перемещающихся вниз по электрохимическому градиенту (разд. 6.4.2). Например, в транспорте ADP участвует система антипорта ADP-ATP при переходе каждой молекулы ADP в матрикс из него выходит наружу одна молекула АТР, причем перенос последней осуществляется по электрохимическому градиенту. В то же время система симпорта сопрягает передвижение фосфата внутрь митохондрии с направленным туда же потоком Н протоны входят в матрикс по градиенту и при этом тащат за собой фосфат. Подобным образом переносится в матриксе и важнейшее топливо для митохондрий-пируват (рис. 9-22). [c.21]

    В результате активации других поверхностных рецепторов в мембране открываются кальциевые каналы, и это приводит к поступлению ионов Са в цитозоль из внеклеточной жидкости или из внутренних хранилищ. Повышение внутриклеточной концентрации Са бывает лишь кратковременным, так как кальциевые каналы открываются ненадолго, а вошедшие в цитозоль ионы Са быстро откачиваются обратно и/или связываются определенными молекулами. [c.270]


    Органеллу можно определить как ограниченную мембраной субклеточную структуру, которую можно выделить при высокоскоростном центрифугировании. Согласно этому определению, рибосомы, цитоскелет и цитозоль не являются органеллами. Однако в этой таблице они перечислены вместе с органеллами, поскольку их тоже обычно выделяют путем центрифугирования. Их можно рассматривать как субклеточные образования или фракции. Препарат органелл, выделенных в ходе одного цикла дифференциального центрифугирования, редко бывает чистым чтобы получить чистую фракцию, обычно приходится центрифугировать препарат по меньшей мере несколько раз. [c.15]

    Хотя в отсутствие цитозоля хлоропласты мезофилла С4-рас-тений почти ие фиксируют Oj, она еще способны к выделению на свету Оа, но только после внесения в среду определенных субстратов, та ких, как ФГК или пируват- -оксалоацетат. Тот факт, что выделение О2 зависит от ФГК, хорошо согласуется с данными о локализации реакций восстановительной фазы ВПФ-цикла в хлоропластах мезофилла и, кроме того, указыва- [c.366]

    Ферменты, которые обнаруживаются в норме в плазме или сыворотке крови, условно можно разделить на 3 группы секреторные, индикаторные и экскреторные. Секреторные ферменты, синтезируясь в печени, в норме выделяются в плазму крови, где играют определенную физиологическую роль. Типичными представителями данной группы являются ферменты, участвующие в процессе свертывания крови, и сывороточная холинэстераза. Индикаторные (клеточные) ферменты попадают в кровь из тканей, где они выполняют определенные внутриклеточные функцгп . Один из них находится главным образом в цитозоле клетки (ЛДГ, альдолаза), другие —в митохондриях (глутаматдегидрогеназа), третьи —в лизосомах ( 3-глюкуронидаза, кислая фосфатаза) и т.д. Большая часть индикаторных ферментов в сыворотке крови определяется в норме лишь в следовых количествах. При пораженгп тех или иных тканей ферменты из клеток вымываются в кровь их активность в сыворотке резко возрастает, являясь индикатором степени и глубины повреждения этих тканей. [c.579]

    Гормональный контроль созревания яйцеклетки и овуляции особенно хорошо изучен у морских звезд и амфибий. У этих животных гонадотропные гормоны стимулируют определенные клетки яичника, побуждая их выделять вторичный медиатор, который в свою очередь воздействует на ооциты и индуцирует процесс их созревания. У морских звезд таким медиатором служит 1-метиладенш, а у амфибий-стероидный гормон прогестерон. Вторичный медиатор связывается рецепторами клеточной поверхности на плазматической мембране ооцита и стимулирует созревание последнего, возможно, путем повышения концентрации свободных ионов Са в ооците в результате освобождения их из внутриклеточного хранилища . О такой роли Са в созревании яйцеклетки свидетельствуют следующие эксперименты 1) введение ионов Са в цитозоль яйцеклетки индуцирует ее созревание в отсутствие гормонов, тогда как введение связывающих кальций соединений (например, ЭГТА) предотвращает созревание даже в присутствии гормонов 2) если в яйцо морской звезды или амфибии ввести связывающий Са белок экво-рин (который излучает свет при связывании нонов кальция), то присоединение медиатора, индуцирующего созревание, к поверхностным рецепторам яйца будет сопровождаться кратковременной вспышкой света. [c.32]

    Сокращение и расслабление скелетных мышц регулируется концентрацией Са в цитозоле. В состоянии покоя концентрация Са в мышце обьгано очень низка. При стимуляции мышечного волокна импульсами двигательного нерва Са высвобЬждается из поперечных мембранных трубочек мышечной клетки. Этот высвободившийся Са связывается со сложным регуляторным белком тропонином, молекулы которого присоединены через определенные промежутки к тонким нитям. Молекулы тропонина играют роль триггера, т. е. пускового механизма, Они претерпевают конформационное изменение, которое оказывает влияние на миозиновые головки в толстых нитях. В них возбуждается АТРазная активность и таким образом инициируется сокращение. Тропонин остается активным до тех пор, пока в цитозоле мышечного волокна присутствует Са . Расслабление мышцы происходит после того, как нервные импульсы перестают к ней поступать и Са за счет действия находящейся в мембране АТРазы, выполняющей роль кальциевого насоса, переносится из саркоплазмы в цистерны саркоплазматического ретикулума. Таким образом, АТР необходим не только для сокращения мышц, но и для их расслабления. Позже мы уви- [c.423]

    ADP из цитозоля в митохондрии, причем внутрь поступает по одному ADP в обмен на каждый АТР , выходящий наружу. Адениннуклеотид-транслоказа-это специфический белок, пронизывающий всю толщу внутренней митохондриальной мембраны и связывающий ADP в строго определенном участке наружной поверхности этой мембраны. Перенос ADP внутрь митохондрии в обмен на выходящий наружу АТР совершается благодаря конформацион-ному изменению молекулы аденинну-клеотид-транслоказы. Адениннуклеотид-транслоказная система специфична. Она переносит только АТР и ADP, но не переносит АМР или другие нуклеотиды, например GDP или GTP. [c.536]

    От всех NAD-зависимых реакций дегидрирования восстановительные эквиваленты переходят к митохондриальной NADH-дегидрогеназе, содержащей в качестве простетической группы FMN. Затем через ряд железо-серных центров они передаются на убихинон, который передает электроны цитохрому Ъ. Далее электроны переходят последовательно на цитохромы j и с, а затем на цитохром аа , (цитохромоксидазу), которая содержит медь. Цитохромоксидаза передает электроны на О2. Для того чтобы полностью восстановить Oj с образованием двух молекул HjO, требуются четыре электрона и четыре иона Н. Перенос электронов блокируется в определенных точках ротеноном, антимицином А и цианидом. Процесс переноса электронов сопровождается значительным снижением свободной энергии. В трех участках дыхательной цепи происходит запасание энергии в результате синтеза АТР из ADP и Р . Окислительное фосфорилирование и перенос электронов можно разобщить, воспользовавшись для этого разобщающими агентами или ионофорами, такими, как валиномицин. Для того чтобы могло происходить окислительное фосфорилирование, внутренняя митохондриальная мембрана должна сохранять свою целостность и должна быть непроницаемой для ионов Н и некоторых других ионов. Перенос электронов сопровождается выталкиванием ионов Н из митохондрий. Согласно хемиосмотической гипотезе (одной из трех гипотез, предложенных для объяснения механизма окислительного фосфорилирования), перенос электронов создает между двумя сторонами внутренней митохондриальной мембраны градиент концентрации ионов Н , при котором их концентрация снаружи выше, чем внутри. Предполагается, что именно этот градиент служит движущей силой синтеза АТР, когда ионы Н, возвращающиеся из цитозоля в матрикс, проходят через [c.545]


Рис. 21-19. Молекулы различных полярных липвдов после завершения их синтеза встраиваются в липидный бислой клеточных мембран в определенных соотношениях. Основная масса полярных липидов встраивается в бислой мембран эндоплазматического ретикулума. Эти липиды поступают затем последовательно в мембраны аппарата Гольджи, секреторные пузырьки и плазматическую мембрану. При помощи специфических белков липиды эндоплазматического ретикулума переносятся через цитозоль и встраиваются в митохондриальные мембраны. Путь мембранных липидов показан красным цветом. Рис. 21-19. Молекулы различных полярных липвдов после завершения их <a href="/info/11666">синтеза</a> встраиваются в <a href="/info/265833">липидный бислой</a> клеточных мембран в определенных соотношениях. Основная масса <a href="/info/187652">полярных липидов</a> встраивается в бислой мембран <a href="/info/105886">эндоплазматического ретикулума</a>. Эти липиды поступают затем последовательно в <a href="/info/1420223">мембраны аппарата</a> <a href="/info/1379238">Гольджи</a>, секреторные пузырьки и плазматическую мембрану. При помощи <a href="/info/1864612">специфических белков</a> липиды <a href="/info/105886">эндоплазматического ретикулума</a> переносятся через <a href="/info/278401">цитозоль</a> и встраиваются в <a href="/info/101316">митохондриальные мембраны</a>. Путь <a href="/info/1327459">мембранных липидов</a> <a href="/info/1903328">показан</a> красным цветом.
    На этом этапе, который протекает не в рибосоме, а в цитозоле, каждая из 20 аминокислот ковалентно присоединяется к определенной тРНК, используя для этого энергию АТР. Эти реакции катализируются группой требующих присутствия ионов активирующих ферментов, каждый из которых является специфическим по отношению к одной из аминокислот и к соответствующей этой аминокислоте тРНК. [c.928]

Рис. 6-51. Принципы использования градиента Ка" для работы насоса, перекачивающего глюкоз>. Насос осциллирует случайным образом между двумя состояниями пинг и понг , как на рис. 6-47. Ка" связывается одинаково хорощо с белком в любой конформации. Связывание Ка" индуцирует аллостерический переход белка в состояние с сильно увеличенным сродством к глюкозе. Поскольку концентрация Ка вне клетки выще, чем в цитозоле, связывание глюкозы с насосом более вероятно в конформации понг . Поэтому перенос Ка" и глюкозы в клетку (переход понг пинг ) происходит намного чаще, чем наоборот, т.е. осуществляется направленный перенос. Поддерживая градиент Ка" на определенном уровне (Ка" + К" )-АТРаза косвенным образом обеспечивает такую транспортную систему энергией. Говорят, что переносчики, работающие по такому принципу, осуществляют вторичный активный транспорт, тогда как АТРаза осуществляет первичный активный Рис. 6-51. Принципы использования градиента Ка" для <a href="/info/1905927">работы насоса</a>, перекачивающего глюкоз>. Насос <a href="/info/880960">осциллирует</a> случайным образом между двумя состояниями <a href="/info/384930">пинг</a> и понг , как на рис. 6-47. Ка" связывается одинаково хорощо с белком в любой конформации. Связывание Ка" индуцирует аллостерический переход белка в состояние с сильно увеличенным сродством к глюкозе. Поскольку концентрация Ка вне клетки выще, чем в <a href="/info/278401">цитозоле</a>, связывание глюкозы с насосом более вероятно в конформации понг . Поэтому перенос Ка" и глюкозы в клетку (переход понг <a href="/info/384930">пинг</a> ) происходит намного чаще, чем наоборот, т.е. осуществляется направленный перенос. Поддерживая градиент Ка" на определенном уровне (Ка" + К" )-<a href="/info/32675">АТРаза</a> косвенным образом обеспечивает такую транспортную систему энергией. <a href="/info/537872">Говорят</a>, что переносчики, работающие по такому принципу, осуществляют <a href="/info/1378953">вторичный активный транспорт</a>, тогда как <a href="/info/32675">АТРаза</a> осуществляет первичный активный
    Некоторые белки непрерывно секретируются производяшими их клетками. Нри этом они упаковываются в транспортные пузырьки в аппарате Гольджи и затем переносятся непосредственно к плазматической мембране. В этом случае говорят о конститутивном пути секреции. В других клетках определенные белки и/или малые молекулы запасаются в специальных секреторных пузырьках, которые сливаются с плазматической мембраной только после получения клетки соответствуюш,его сигнала извне. Этот процесс носит название регулируемого пути секреции (рис. 6-69). Конститутивный путь осуш,ествляется во всех клетках, а регулируемый путь обнаружен главным образом в клетках, приспособленных для секреции производимых ими вешеств в зависимости от определенных потребностей. Обычно это гормоны, нейротрансмиттеры или перевариваюш,ие ферменты. В таких специализированных секреторных клетках сигналом к секреции часто служит химический медиатор, например, гормон, связываюш,ийся с рецепторами на клеточной поверхности. В результате происходит активация рецепторов, которая генерирует внутриклеточный сигнал, зачастую включающий кратковременное повышение концентрации свободного Са " в цитозоле (см. разд. 12.3.7). С помощью неизвестного механизма этот сигнал (сигналы) инициирует процесс экзоцитоза, побуждая секреторные пузырьки к слиянию с плазматической мембраной и. таким образом, к высвобождению их содержимого во внеклеточное пространство. [c.409]

    По синтез АТР - это не единственный процесс, идущий за счет энергии электрохимического градиента. В матриксе, где находятся ферменты, участвующие в цикле лимонной кислоты и других метаболических реакциях, необходимо поддерживать высокие концентрации различных субстратов в частности, для АТР-синтетазы требуются ADP и фосфат. Поэтому через внутреннюю мембрану должны транспортироваться разнообразные несущие заряд субстраты. Это достигается с помощью различных белков-переносчиков, встроенных в мембрану (см. разд. 6.4.4). многие из которых активно перекачивают определенные молекулы против их электрохимических градиентов, т. е. осуществляют процесс, требующий затраты энергии. Для большей части метаболитов источником этой энергии служит сопряжение с перемещением каких-то других молекул вниз по их электрохимическому градиенту (см. разд. 6.4.9). Папример, в транспорте ADP участвует система антипорта ADP-ATP при переходе каждой молекулы ADP в матрикс из него выходит по своему электрохимическому градиенту одна молекула АТР. В то же время система симпорта сопрягает переход фосфата внутрь митохондрии с направленным туда же потоком П протоны входят в матрикс по своему градиенту и при этом ташат за собой фосфат. Подобным образом переносится в матрикс и пируват (рис. 7-21). Энергия электрохимического протонного градиента используется также для переноса в матрикс ионов Са , которые, по-видимому, играют важную роль в регуляции активности некоторых митохондриальных ферментов большое значение может иметь и поглощение митохондриями этих ионов для удаления их из цитозоля, когда концентрация Са в последнем становится опасно высокой (см. разд. 12.3.7). [c.443]

    Происхождение клеточного ядра, имеющего особенным образом устроенную двойную мембрану, более загадочно. Известно, что единственная бактериальная хромосома прикреплена к совершенно определенным участкам с внутренней стороны прокариотической плазматической мембраны. Одно из предположений состоит в том. что двуслойная ядерная оболочка могла образоваться из глубокого виячивания плазматической мембраны, как показано на рис. 8-4, Б. Эта гипотеза объясняет, почему внутреннее пространство ядра топологически эквивалентно цитозолю. Действительно, во время митоза у высших эукариот ядерная оболочка разрушается, и содержимое ядра полностью смешивается с цитозолем, чего никогда не происходит ни с одной другой мембранной органеллой. Таким образом, во время митоза клетка временно возвращается к прокариотическому состоянию, когда хромосомы не имеют отдельного компартмента. [c.9]

    Некоторые типы рецепторов стероидных гормонов изначально, в отсутствие гормона, находятся в цитозоле, а другие - в ядре. В обоих случаях присоединение гормона повышает сродство рецептора к ДНК, что позволяет рецептору прочно связываться с определенными нуклеотидными последовательностями в гене, который регулируется данным гормоном. Связывание гормон-рецепторпого комплекса со специфическими участками гена активирует (или иногда подавляет) транскрипцию данного гена. [c.350]

    Несмотря на эти различия, и в том и в другом случае клетка синтезирует белки-предшественники, содержащие сигнальную последовательность, которая определяет, к какой мембране направится данный белок. По-видимому, во многих случаях эта последовательность отщепляется от молекулы-предшественника после завершения транспортного процесса. Однако некоторые белки сразу синтезируются в окончательном виде. Полагают, что в таких случаях сигнальная последовательность заключена в полипептидной цепи готового белка. Сигнальные последовате.иьности еще плохо изучены, но, вероятно, должно быть несколько типов таких последовательностей, каждый из которых определяет перенос белковой молекулы в определенную область клетки. Например, в растительной клетке некоторые из белков, синтез которых начинается в цитозоле, транспортируются затем в митохондрии, другие-в хлоропласты, третьи-в пероксисомы, четвертые-в эндоплазматиче-ский ретикулум. Сложные процессы, приводящие к правильному внутриклеточному распределению белков, только сейчас становятся понятными (подробности см. в гл. 7). [c.66]

    Рост и деление митохондрий и хлоропластов контролируются двумя отдельными генетическими системами геномом самой органеллы и ядерным геномом. Большая часть белков этих органелл закодирована в ядерной ДНК, синтезируется в цитозоле и затем переносится в органеллу. Однако сравнительно немногие белки этих органелл и все их РНК кодируются в ДНК органеллы и синтезируются самой органеллой. Определение полной последовательности более чем 16000 нуклеотидов в митохондриальном геноме человека показало, что в нем содержатся структурные гены двух рибосомных РНК, 22 транспортных РНК и 13 различных полипептидных цепей. Геномы хлоропластов примерно в 10 раз больше генома митохондрий человека и, как полагают, содержат гораздо больше генов. Однако преобладающая роль в биогенезе органелл обоих типов принадлежит ядерному геному это видно из того факта, что проорганеллы образуются даже у таких мутантов, у которых полностью отсутствует функционирующий геном органелл. [c.70]

    Второй способ действия рецепторов состоит в том, что они открывают или закрывают регулируемые ионные каналы плазматической мембраны. Здесь возможны два механизма создания сигнала 1) изменение в состоянии каналов порождает небольшой и непродолжительный ионный ток, что приводит к кратковременному изменению мембранного потенциала 2) открытие каналов приводит к значительному притоку ионов в цитозоль, что в свою очередь вызывает внутриклеточную реакцию. Первый механизм работает главным образом в электрически активных клетках, например в нейронах и мьш1ечпых волокнах. Так, например, большинство нейромедиаторов регулирует мембранный потенциал постсинаптической клетки, открывая или закрывая ионные каналы ее плазматической мембраны падение мембранного потенциала ниже определенного порогового уровня вызывает взрывную деполяризацию мембраны потенциал действия), которая быстро распространяется по всей мембране постсинаптической клетки. Эти изменения мембранного потенциала не сопровождаются заметными изменениями концентраций ионов в цитозоле, так что исходный сигнал, полученный постсинаптической мембраной, не превращается в истинный внутриклеточный сигнал до тех пор, пока распространяющийся потенциал действия не дойдет до нервного окончания. Плазматическая мембрана нервного окончания содержит потенциалзависимые каналы для Са вызванная потенциалом действия временная деполяризация мембраны открывает эти каналы, и ионы кальция устремляются внутрь окончания вниз по своему очень крутому электрохимическому градиенту, выполняя роль второго посредника, запускающего секрецию нейромедиатора (см. гл. 18). [c.263]

    Вторые посредники не только позволяют рецепторам клеточной поверхности переводить внеклеточные сигналы во внутриклеточные, но и обеспечивают значительное усиление первоначального сигнала. Мы уже видели, что в случае активации аденилатциклазы каждая молекула рецептора, присоединившая лиганд, активирует много молекул ОТР-связывающего белка, а значит, и много молекул аденилатциклазы. В свою очередь каждая молекула аденилатциклазы катализирует превращение множества молекул АТР в сАМР. Аналогичным образом, если присоединение лиганда к рецептору ведет к открытию кальциевых каналов, в цитозоль проникает сразу много ионов кальция. Эти вторые посредники служат аллостерическими эффекторами, активирующими определенные белки, например протеинкиназы, которые в свою очередь превращают (в случае киназ-путем фосфорилирования) очень большое число молекул-субстратов в третьи посредники и т. д. Благодаря таким каскадам одна внеклеточная сигнальная молекула способна вызвать образование в клетке-мишени многих тысяч молекул-эффекторов (рис. 13-35). [c.277]

    Обычно больщая часть клеток, находящихся в покоящемся состоянии, пребывает в состоянии 4, при котором скорость дыхания определяется доступностью ADP. Энергия, необходимая для совершения работы, поставляется за счет превращения АТР в ADP в результате создаются условия для увеличения скорости дыхания, что в свою очередь приводит к восполнению запасов АТР (рис. 13.7). Очевидно, что при определенных условиях на скорость работы дыхательной цепи может влиять и концентрация неорганического фосфата. При повышении скорости дыхания (вызванном, например, физической работой) клетка приближается к состоянию 3 или состоянию 5 либо исчерпываются возможности дыхательной цепи, либо величина Pq опускается ниже значения для цитохрома й,. Скорость-лимитирующим фактором может оказаться ATP/ADP-транслокатор (см. 138), обеспечивающий поступление ADP из цитозоля в митохондрии. [c.131]

    Жирные кислоты окисляются до ацетил-СоА и в то же время образуются из этого соединения. Хотя исходное вещество одного процесса идентично конечному продукту другого и химические стадии этих двух процессов сопоставимы, биосинтез жирных кислот отнюдь не является обращением процесса их окисления. Окисление жирных кислот происходит в митохондриях. Каждая стадия катализируется определенным ферментом и протекает с участием производного—ацил-СоА, в процессе участвуют коферменты NAD и FAD в результате окисления жирных кислот образуется АТР. Биосинтез же жирных кислот (липогенез) протекает в цитозоле, в нем участвуют ацил-производные, постоянно связанные с полиферментным комплексом, в качестве кофермента функционирует NADP для процесса необходимы АТР и ионы бикарбоната. [c.225]

    Не все биомембраны могут превращать одну форму энергии в другую. Некоторые из них не обладают энергетическими функциями. Таковы, в частности, внешние мембраны митохондрий и грам-отрицательных бактерий. В обеих названных мембранах содержится особый белок—порин, образующий в них довольно большие поры, проницаемые для низкомолекулярных соединений. Внешние мембраны митохондрий и бактерий служат барьером, не проницаемым для белков, растворенных в пространстве между внешней и внутренней мембранами. Кроме того, внешние мембраны содержат некоторые якорные белки, специфически связывающие наподобие рецепторов определенные компоненты цитозоля (в случае митохондрий) или внешней среды (в случае бактерий). Некоторые из рецептор-подобных белков были идентифицированы с поринами. [c.13]

    Пути распада белков. 1лавный, но возможно не единственный путь распада белков в организме—гидролиз. Гидролитический распад белков протекает в любой клетке организма в основном в специальных субклеточных элементах—лизосомах, где сосредоточены гидролитические ферменты и где осуществляется деструкция высокомолекулярных веществ до низкомолекулярных метаболитов. Вместе с тем определенная часть ферментов, ускоряющих распад белков, есть в цитозоле клетки, а некоторые из них секретируются, обеспечивая внеклеточное переваривание белков. В ряде органов и тканей (пищеварительная система животных, запасающие органы растений и т. п.) гидролиз белков осуществляется с огромной интенсивностью и в большом масштабе. Так, в печени крысы ежедневно распадается около 40% белков, а время полужизни белков важнейших субклеточных структур (ядро, рибосомы, митохондрии) и цитозоля составляет около 5 суток, хотя есть и более короткоживущие (сутки и менее) и более длительно существующие (до двухтрех месяцев) белки и ферменты. [c.262]


Смотреть страницы где упоминается термин Цитозоль, определение: [c.513]    [c.389]    [c.808]    [c.929]    [c.104]    [c.34]    [c.275]    [c.406]    [c.442]    [c.15]    [c.29]    [c.53]    [c.53]    [c.64]    [c.344]    [c.168]    [c.277]    [c.168]    [c.219]    [c.352]    [c.207]    [c.301]    [c.455]    [c.465]   
Биохимия Том 3 (1980) -- [ c.29 ]




ПОИСК







© 2025 chem21.info Реклама на сайте