Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение неизвестных веществ по их свойствам

    Определение неизвестных веществ по их свойствам 53 [c.53]

    В лабораторной практике рассмотренное свойство может быть использовано для определения молярной массы неизвестного вещества, если оно не растворяется в воде и не вступает с ней в химическую реакцию  [c.226]

    Хроматографический анализ — это метод разделения жидких или газообразных смесей, основанный на различной сорбции их компонентов определенным сорбентом в динамических условиях. В наиболее простом варианте хроматографический анализ заключается в пропускании анализируемой смеси через колонку, заполненную сорбентом. Если компоненты смеси сорбируются по-разному, то в процессе продвижения по слою сорбента они разделяются и их можно извлечь из колонки в виде отдельных фракций. Таким образом, в отличие от других физико-химических методов анализа, основной задачей хроматографического анализа является разделение близких по химическим свойствам веществ. После разделения компоненты анализируемой смеси могут быть определены любым химическим, физикохимическим или физическим методом. Лишь в отдельных случаях сопоставление результатов разделения смеси неизвестных веществ с результатами, полученными со стандартными смесями известного состава, позволяет непосредственно по хроматографическим данным идентифицировать и количественно определять компоненты анализируемой смеси. [c.5]


    Открытие гомологии сыграло большую роль в развитии органической химии. Оно позволило выделить из огромного количества органических соединений определенные ряды веществ, что значительно облегчило изучение их свойств. Исчерпывающее объяснение гомологии оказалось возможным только на основании теории химического строения, согласно которой гомология является следствием способности углеродных атомов образовывать цепи различной длины. Развитие представлений о гомологии позволило предсказать и открыть многие ранее неизвестные члены гомологических рядов. Изучением гомологии, особенно в области предельных углеводородов, подробно занимался известный немецкий химик-органик К- Шорлеммер (1834—1892). [c.40]

    Индексы удерживания обладают рядом полезных свойств [64], позволяющих не только идентифицировать по их значениям неизвестные вещества, но и предсказывать, каким должен быть индекс удерживания того или иного вещества на определенной жидкой фазе и при определенной температуре. Кстати, следует помнить, что индексы удерживания зависят не только от свойств системы сорбат— сорбент, но и от температуры опыта. Поэтому всегда необходима указывать, на какой жидкой фазе и при какой температуре определен индекс удерживания данного вещества. Например, запись /ш =840 означает, что индекс удерживания данного вещества на сквалане в качестве неподвижной жидкой фазы при температуре колонки 100° С равен 840 единицам. [c.116]

    Вероятно, наиболее часто эти свойства используют для определения молекулярных весов неизвестных веществ, поскольку [c.151]

    Хотя это и не очень явно следует из определения, в системе индексов удерживания фактически используется линейная шкала свободных энергий растворения в неподвижной жидкой фазе или адсорбции на неподвижной фазе. Благодаря этой термодинамической основе в систему индексов удерживания включены некоторые фундаментальные свойства. Например, линейные зависимости свободных энергий могут быть использованы для расчета индекса удерживания веществ, которых нет в наличии, или для идентификации неизвестных веществ. Этой проблеме посвящено значительное количество литературы (см. гл. И). [c.33]

    Газо-жидкостная хроматография дает возможность осуществить анализ по трем направлениям эффективное разделение исходного образца на отдельные компоненты, идентификация этих компонентов (качественный анализ) и определение содержания компонентов (количественный анализ). Качественный анализ проводится путем сравнения положения пиков неизвестных веществ с положением ников, полученных при проведении анализа на той же колонке с известными веществами. Количественный анализ проводится путем обработки снятых хроматограмм и определяется выбором фиксирующего приспособления (характером связи его показаний с концентрациями компонентов, выходящих из колонки). Количественный анализ, как отмечает в своей книге Филлипс К. [38], сравнительно прост, если показания фиксирующего прибора линейно связаны с числом молекул анализируемого вещества, не зависят от природы последнего (или связаны с такими его свойствами, как, например, молекулярным весом, числом кислотных групп и т. д.) и имеют интегральный характер, т. е. дают хроматограмму ступенчатую, а не в виде пиков. [c.191]


    Определение структурной формулы неизвестного соединения после установления его молекулярной формулы может оказаться и легким и трудным делом. Обычно стараются получить возможно больше спектральной и химической информации о природе присутствующих в соединении групп. Если этого недостаточно для установления структуры, то используют химические методы для того, чтобы превратить данное соединение в соединение с известной структурой. Обычно при этом производится деструкция, т. е. расчленение молекулы на части меньших размеров. Характер полученных известных соединений и использованных для их получения реакций позволяет установить структуру исходного неизвестного вещества. Если для перехода к известным соединениям требуется многостадийная деструкция, то. определение строения исходного соединения напоминает подчас задачу установления архитектуры здания по груде кирпичей, из которых оно было построено. В идеальном же случае с данным набором химических и физических свойств согласуется только одна структурная формула. Этот идеал часто оказывается недостижимым, и при решении сложных вопросов строения для установления истинного положения атомов в пространстве приходится прибегать к помощи рентгеноструктурного анализа и дифракции электронов. Окончательной проверкой правильности определения структуры служит обычно синтез данного соединения каким-либо методом, однозначность которого не вызывает сомнений. Если синтезированное таким образом и исследуемое соединения оказываются идентичными, то предположенная структура считается правильной. Ниже приведен пример, иллюстрирующий общий подход к проблеме установления структуры. [c.28]

    Рассмотренные в гл. 3 зависимости между величинами удерживания сорбатов и их физико-химическими характеристиками, справедливые в пределах гомологического ряда или групп изомеров, могут быть использованы не только для идентификации неизвестных веществ по их физико-химическим свойствам, но и для решения обратной задачи — определения свойств известных сорбатов по их характеристикам удерживания. Для этого применяют методы определения температуры кипения, давления насыщенного нара, молекулярной массы, рефракции, парахора, абсолютной энтропии, дипольного момента и некоторых других свойств. Хотя такие корреляции нередко обеспечивают достаточно высокую точность (например, погрешность определения температур кипения может составлять десятые доли градуса), гем не менее справедливость лишь в пределах групп сорбатов близкого строения является серьезным ограничением их применимости. Поэтому на практике используют и другие различные приемы. [c.294]

    Рассмотренные в гл. III зависимости между величинами удерживания сорбатов и их физико-химическими характеристиками, справедливые в пределах гомологического ряда или групп изомеров, могут быть использованы не только для идентификации неизвестных веществ по их физико-химическим свойствам, но и для решения обратной задачи — определения свойств известных сорбатов по их характеристикам удерживания. Сюда следует отнести методы опре- [c.316]

    Изоморфизм и связанная с ним способность к образованию изоморфных смесей являются измеримыми свойствами элементов и их соединений. Благодаря этому применение закона Митчерлиха позволило в ряде случаев не только установить сходство двух соединений разных элементов, но и определить формулы неизвестных веществ. Так, на основании изоморфизма селената и сульфата калия Э. Митчерлиху удалось установить формулу открытой им селеновой кислоты. Им же впервые было предложено определять атомные веса на основании формулы соединения, найденной по изоморфизму. Определенный с помощью этого метода атомный вес селена оказался равным 79, что весьма близко к современному его значению (78, 96). Методом изоморфизма Я. Берцелиус установил правильные формулы окисей железа и алюминия, которым вначале приписывали состав РеОз и АЮз. Эти окиси оказались изоморфными окиси хрома, формула которой была однозначно установлена им ранее. Таким образом выяснилось, что действительные атомные веса железа и алюминия должны быть вдвое меньше по сравнению с принимавшимися ранее значениями. [c.23]

    Принцип определения химического состава всеми методами один и тот же состав вещества определяется по его свойствам. Каждое вещество, отличающееся от других веществ своим составом и строением, обладает некоторыми индивидуальными, только ему одному присущими свойствами. Растворимость, спектр поглощения или электрохимические характеристики, форма кристаллов и другие аналитические свойства изменяются при изменении состава вещества. Таким образом, определив свойства неизвестного вещества, можно отождествить его с одним из известных веществ, т. е. опознать, определить неизвестное вещество. Для такого качественного анализа достаточно исследовать несколько характерных аналитических свойств данного вещества или продуктов некоторых его реакций. [c.13]


    Качественный анализ неизвестного вещества основан на ряде многочисленных и разнообразных реакций, при которых элементы и группы элементов, входящие в состав исследуемого вещества, образуют новые химические соединения, обладающие определенными свойствами и характерными признаками, как-то кристаллической формой, цветом, запахом и др. [c.12]

    Определение процентного состава неизвестного вещества проводится с целью выяснения его эмпирической, а в конце концов и молекулярной формулы. Эмпирическая формула выражает в простейшей форме относительное количество атомов каждого из элементов, входящих в состав одной молекулы вещества. Молекулярная формула вещества указывает на истинное число атомов каждого из элементов, входящих в состав одной молекулы вещества. Для данного вещества эти две формулы могут совпадать или не совпадать, что зависит от свойства вещества, называемого молекулярным весом. Его легко определить с помощью одного из стандартных физических методов — измерением плотности пара, депрессии температуры плавления, вязкости раствора, скорости седиментации и т. д. [c.15]

    Неизвестное вещество может быть идентифицировано по уже опубликованному индексу удерживания, действительно принадлежащему этому веществу, если применяют ту же самую неподвижную фазу и температуру и выполняют вышеуказанные требования, уделяя особое внимание качеству неподвижной фазы [о свойствах которой можно судить по константам Роршнайдера— Мак-Рейнольдса (определение см. в разд. 2 гл. Vni)] и высокой эффективности разделения. Разделительная способность газохроматографической колонки должна быть больше наименьшей разности значений индексов, используемых для идентификации. [c.234]

    Определение структурной формулы. Этанол. Наиболее важное значение при идентификации неизвестного вещества имеет определение последовательности атомов, связанных в молекуле. Это может оказаться настолько же увлекательным, как детективный рассказ. Ключ к разгадке дают химические и физические свойства вещества. И только правильно собрав доказательства, химик может опознать молекулу. [c.485]

    Такое определение может быть проведено и для веществ с неизвестным молекулярным весом, если предварительно присоединить к молекулам этих веществ структурные группировки с известным характерным поглощением [218, 224]. По интенсивности характеристических полос этих группировок можно определить молярную концентрацию введенных группировок, а, следовательно, и эквивалентную концентрацию неизвестного вещества в растворе. Вводимые группировки должны иметь следующие свойства а) полосы поглощения вводимой группировки должны находиться в иной спектральной области по сравнению с полосами исследуемого вещества и быть достаточно интенсивными б) введение структурной группы должно осуществляться таким образом, чтобы исключить влияние поглощающих хромофоров вводимой группы и основной молекулы. [c.74]

    Дальнейшее исследование структуры может развиваться в направлении более детального качественного анализа, цель которого состоит в обнаружении функциональных групп, присутствующих в молекуле. Функциональные группы — это элементы структуры (отдельные атомы, группы атомов, кратные связи), которые могут быть введены в молекулы насыщенных углеводородов, причем свойства этих молекул изменяются определенным образом в зависимости от характера групп, что позволяет классифицировать вещества по этому признаку (ср. разд. 3). Подобную классификацию вещества можно провести с помощью совокупности методов химического качественного анализа, основанных на том принципе, что функциональная группа будет участвовать в тех реакциях, которые более или менее специфичны для нее. Умело манипулируя совокупностью этих методов, удается отбросить одну задругой альтернативные структуры и в конце концов показать, что вещество относится к определенному классу. Анализ завершают тем, что сравнивают простейшие физические и химические свойства неизвестного вещества с соответствующими свойствами молекул известного строения. Однако подобная последовательность операций весьма трудоемка и может требовать большого расхода вещества, и химики сейчас все более и более полагаются на гораздо более экономные методы инструментального анализа, такие, как хроматография и различные варианты спектроскопии (гл. 7). [c.14]

    Хроматографию на бумаге применяют для разделения, идентификации и приблизительного детектирования близких по свойствам органических соединений. Наряду с этим разделение на бумаге используют для исследования химического строения неизвестных веществ. В качестве примера можно привести описание определения вещества, получившего условное название искомая кислота [23]. Это соединение выделяли осаждением из подкисленного активированного отстоя промышленных стоков после нескольких стадий очистки. Основной задачей было изучение продуктов разложения искомой кислоты с целью выяснения ее структуры и состава. Разделение продуктов распада проводили двумя элюентами (подвижная фаза) А — смесь 65%-ного изопропанола и 2 н. раствора НС1 и Б — системой растворителей н-бутанол — уксусная кислота — вода (80 20 100). [c.569]

    Требуется опытным путем установить свойства основного компонента неизвестного вещества весом 2 г, предложить метод очистки, выделить как можно больше чистого продукта п доказать его чистоту. В характеристику вещества должны входить определение температуры плавления, данные о раство- [c.70]

    После исследования физических свойств и проведения качественного анализа неизвестного вещества (кроме определений углерода, водорода, и кислорода), его причисляют на основании растворимости в воде, эфире, разбавленных кислотах, разбавленных щелочах и концентрированной серной кислоте к одной из шести групп. Эти сведения дают ключ к определению присутствующей в соединении функциональной группы или нескольких групп. Применение стандартных групповых проб дает возможность уточнить эту первоначальную классификацию по растворимости. [c.265]

    Из закона отношения проводимостей вытекают также некоторые другие известные законы, в частности закон Грюнейзена (1908 г.), согласно которому отношение объемного коэффициента теплового расширения к теплоемкости не зависит от температуры [18, с. 175]. Кроме того, из закона отношения проводимостей могут быть выведены многие новые закономерности для твердых, жидких и газообразных тел и различных степеней свободы системы, охватывающих, например, такие свойства, как диэлектрическая постоянная, магнитная проницаемость, вязкость, изотермическая сжимаемость и т. д. [17, 18]. Эти закономерности могут быть с успехом применены на практике для определения неизвестных свойств веществ по известным. [c.306]

    Способность водорода присоединяться по месту кратных углеродных связей известна уже давно. Еще в середине XIX в. М. Фарадей, проведя реакцию взаимодействия водорода с этиленом над платиной, осуществил превращение этилена в этан. Однако долгое время разрозненные наблюдения отдельных авторов казались лишенными интереса. Лишь после того, как было открыто замечательное свойство некоторых восстановленных металлов, например никеля, кобальта, меди [1], способствовать гидрированию, т. е. насыщению водородом алифатических и ароматических кратных связей, каталитическое гидрирование начало быстро развиваться. В настоящее время им широко пользуются в исследовательской работе для изучения числа и характера насыщенных связей, определения строения неизвестных соединений, например природных веществ. Внедрение гидрирования в технику явилось стимулом для грандиозного развития процессов деструктивного гидрирования, синтезов из окислов углерода, облагораживания топлива и многочисленных реакций восстановления. [c.338]

    Очень часто вещества, подлежащие определению, не являются новыми неизвестными соединениями, а были получены ранее и описаны в литературе. В этом случае нужно провести идентификацию соединения, т. е. установить, что исследуемое соединение имеет физические и химические свойства, идентичные свойствам одного из уже описанных органических веществ. [c.227]

    Эти свойства называются коллигативными (что означает коллективными) потому, что они зависят от количества имеющихся молекул или ионов растворенного вещества, а не от природы растворенных частиц (до тех пор, пока они остаются нелетучими и появляются только в жидкой фазе). Коллигативные свойства играли важную роль для химиков прошлого века, поскольку они позволяли судить о числе частиц имеющегося в наличии растворенного вещества, а следовательно, о его молекулярной массе и степени ионизации в растворе. Коллигативные свойства позволили Аррениусу показать, что в растворе содержится больше частиц, чем имелось в наличии молекул растворенного вещества, а следовательно, что молекулы растворенного вещества в растворе разрываются на ионы. В настоящее время коллигативные свойства использ ются главным образом для определения молекулярных масс неизвестных веществ по способу, который будет описан ниже. [c.138]

    Если фракционировка производится с целью отделения ничтожного количества неизвестного вещества от известного основного вещества, как, например, при очистке ве1Цеств, определение точки замерзания является, повидимому, единственным надежным свойством, которое можно исполь-] зовать в этом случае для оценки чистоты. [c.17]

    В литературе описан ряд удобных методов идентификации органических соединений, основанных на определении некоторых характерных физических свойств (температуры плавления, цвета и т. д.) молекулярных комплексов, включающих неизвестное вещество. Для идентификации соединений, доступных в очень ограниченном количестве, особенно удобен. микроаппарат, предложенный Кофлером [17] для микроопределений температуры плавления под микроскопом. Образец комплексообразующего вещества сначала расплавляют, а затем дают ему закристаллизоваться на половине круглого покровного стекла. На другую часть стекла аналогичным образом наносят неизвестное вещество. После этого вещество почти полностью расплавляют и затем медленно охлаждают, контролируя температуру предметного столика микроскопа. Можно легко наблюдать температуры затвердевания молекулярного соединения в центре предметного стекла и двух эвтектик по краям. Таким образом, для идентификации неизвестного вещества имеются четыре температуры плавления — самого вещества, комплекса и эвтектик. Этот метод легко применим для идентификации ароматических соединений с 2, 4, 7-тринитрофлуореноном [18]. Для определения микроколичеств ароматического вещества полезные качественные сведения можно получить с помощью метода, в котором каплю исследуемого образца наносят на фильтровальную бумагу с раствором 2, 4, 7-тринитрофлуоренона в бензоле [19]. С изменением структуры доноров цвет комплексов изменяется, переходя от желтого к красному. [c.157]

    Эти данные составляют краткую характеристику физических свойств воды, как определенного вещества. Для этой же цели можно прибавить, что вода есть жидкость легкоподвижная, бесцветная, прозрачная, не имеющая ни запаха, ни вкуса и т. п. на эти свойства здесь нет нужды указывать, потому что воду всякий знает, а при описании неизвестных веществ эти признаки указываются. Скрытое ее тепло испарения = 538, плавления =79 единицам теплоты [431. Большое количество тепла, содержащееся в водяных парах и даже в жидкой воде (гютому что ее теплоемкость более, чем других веществ), ведет к тому, что горячую воду и водяные пары употребляют для нагревания [44]. [c.57]

    Таким образом, аргон должно определить как особый газ, отличающийся беспримерною (до его открытия) химическою недеятельностью, но совершенно определенный по физическим свойствам, из которых должно также обратить внимание на самостоятельность спектра аргона. А так как самостоятельными спектрами обладают преимущественно (гл. 13) тела простые, то аргон принято считать в их числе, хотя главной характеристики простых тел, т.-е. самостоятельных и своеобразных соответственных соединй ний, для аргона неизвестно. Однако, можно умственно допустить и такой разряд элементов, который не соединяется ни с водородом, ни с кислородом для образования кислотных или основных веществ, так как известны многие элементы, не соединяющиеся с водородом, а фтор не соединен с кислородом, — для образования солеобразных веществ. Если же это так, то мы имеем право образовать особую группу — аргоновых элементов, причисляя к ней гелий Не, неон Не, аргон Аг, криптон Кг и ксенон Хе, не только потому, что они друг друга сопровождают при азоте воздуха и представляют полное между собою сходство—по своей инертности или неспособности вступать известными нам способами в соединения, более или менее сходные с основаниями, кислотами или солями, но также и потому, что эта группа аргоновых элементов совершенно сходна (даже по величине атомных весов) с другими наиболее характерными группами элементов, о чем подробнее говорится в главе 15. [c.170]

    Качественный анализ. Аналитическая химия изучает методы определения состава отдельных вешеств, их смесей и растворов. Если химическое исследование ограничивается определением ионов и радикалов, присутствующих в данном соединении, и установлением в то же время лишь приблизительных их количеств, анализ называется качественным. При точном определении относительных количеств ионов или радикалов анализ называется количественным. Конечно, при полном анализе неизвестного вещества первый предшествует последнему. Часто бывает достаточно одного качественного анализа для идентификации веществ или смеси. Например, если было найдено, что вещество содержит только Ма" " и С1 , то это может быть только МаС1. Если неиз-вестный образец представляет собой индивидуальное вещество, часто для его идентификации бывает достаточно определить только некоторые из его физических и химических свойств. При анализе смеси необходимо предварительное разделение составных ее частей. [c.11]

    После определения принадлежности неизвестного вещества к одной из групп (например, к пятой группе) по его растворимости вероятный тип вещества может быть определен с помощью групповых реакций. Поскольку члены данной группы содержат карбонильную группу, это могут быть хиноны, кетоны, альдегиды, сложные эфиры или ангидриды. Свойства, характерные для данных типов соединений, уже обсуждены в предыдущих главах достаточно подробно. В некоторых случаях необходи.мые указания содержатся в примечаниях. [c.274]

    Те немногие химические или, пожалуй, физико-химические ме--тоды, которые применяются в исследовании нефти, предусматривают определение или удаление не индивидов, а целых трупп более или менее однородных веществ, вроде парафина, асфальта и смол, нафтеновых кислот и т. п. Аналитик сплошь и радом вынужден оперировать с веществами совершенно неизвестного состава и строения,, и немудрено поэтому, что в обла)Сти нефтяной химии, как ни в какой другой, получили самое широкое распространение чисто эмпирические приемы исследования, дающие те или иные цифры, которые можно между собою сравнивать, но которые ничего не говорят конкретно. Выделение парафина, асфальтов, смол — все это физические процессы, основанные на некотором различии в свойствах этих веществ и самой нефти. Но химически между твердым парафинам и парафиновым маслом ряда СцН2п- -2> асфальтом твердым и мягким, между смолами и вообще непредельными соединениями часто невозможно провести границу, и точное определение требует постоянно самого тщательного следования рецептуре и методике. Все это создает в области анализа нефти ряд приемов совершенно условных, и еще большой вопрос, ко всем ли нефтям мы имеем одинаковое право прилагать те или иные методы. [c.14]

    После того как неизвестное вещество отнесено к определенному классу, изучают свойства данной группы органических соединений и выбирают тот член группы, свойства которого ближе всего совпадают со свойствами неизвестного вещества. Особенно большую помощь оказывают такие физические константы, как точка плавления, точка кипения, плотность и показатель преломления. Если, например, неизвестное вещество является твердым первичным ароматическим амином ст. пл. ПЗ—П4°, то для сравнения из литературы подбирают твердые ариламины с температурой плавления в пределах ПО—115° (см. [120—130], гл. IV, раздел 1,9). Подобным образом часто возможно условно идентифицировать неизвестное вещество. При существовании нескольких ариламинов с температурой плавления между 112— 114° для идентификации неизвестного вещества используют приготовление его производных, как описано в гл. XVI в некоторых случаях можно обойтись без приготовления производных. Так, в описанном выше случае с ариламнном можно быстро установить, является ли неизвестное вещество л-нитроанилином (т. пл. 114°) или р-нафтиламином (т. пл. 112°), путем определения точек плавления смесей исследуемого материала с каждым из этих веществ. Получение производных органических веществ подробно описано в гл. XVI. [c.380]

    Если вещества не идентичны, то различия свойств по обе стороны границы раздела могут быть самые разнообразные. В том случае, когда вещества не одинаковы и не изоморфны, рост кристаллов, начавшийся в области известного вещества, прекращается на линии раздела. Даже в том случае, когда кристаллизация в области известного вещества создает на линии раздела возмущения, достаточные, чтобы вызвать кристаллизацию неизвестного вещества, скорость роста кристаллов и их оптические свойства меняются при переходе через границу раздела. При плавлении сохраняются различия по обе стороны линии раздела то же самое относится к узкой пограничной области, где смешиваются оба вещества, так как там создаются условия для образования эвтектик или даже определенных молекулярных соединений. Равным образом в препаратах, в которых известное и неизвестное вещества изоморфны, вблизи границы наблюдается небольшое замедление скорости- кристаллизации, причем кристаллы, которые растут в узкой области смешения, имеют менее правильную форму, чем кристаллы чистых известного и неизвестного веществ. Некоторые пары соединений трудно различить при помощи метода сопоставления расплавов, например п-дихлор-бензола и /г-дибромбензола, 2,4-дихлор-1-нафтола и 2,4-дибром-1-нафтола.  [c.262]

    Поскольку испытуемое вещество обычно помещают в цилиндрический стеклянный сосуд, то следует принять во внимание тйкже и магнитные свойства самого сосуда. Это затруднение можно легко обойти путем измерения в одном и том же стеклянном сосуде двух различных веществ с известной восприимчивостью. Разница между двумя усилиями пропорциональна разнице между восприимчивостями двух веществ таким образом определяется коэффициент пропорциональности для перевода кажущегося изменения веса в рациональные единицы восприимчивости. Однако следует иметь в виду, что при работе этим методом необходимо всегда производить два измерения. Сначала сосуд наполняют веществом с известной восприимчивостью и нри определенных условиях находят магнитное усилие, равное, например, л миллиграммам. Этот же сосуд наполняют веществом с неизвестной восприимчивостью и при прочих равных условиях находят усилие, равное, например, т миллиграммам. Следовательно, разность —т) пропорциональна разности между восприимчивостями известного и неизвестного веществ. Коэффициент пропорциональности получается из измерения (п—т) для двух веществ с известной восприимчивостью. [c.583]

    Применение теории соответственных состояний для определения свойств смесей. В принципе, универсальные диаграммы, построенные для чистых (индивидуальных) веществ, могут применяться для определения свойств смесей. Однако в этом случае возникает трудность, связанная с расчетом приведенных параметров, поскольку неизвестно, какие критические постоянные Р1ужно использовать в уравнениях (1У-40). Кэй предложил вычислять значения критических постоянных аддитивно, суммируя составляющие, пропорциональные этим критическим постоянным и мольным долям компонентов смеси. Рассчитанные таким способом величины получили название псевдокритических параметров смеси (индекс рс ). [c.100]

    Аофальтообразные вещества обнимают собой довольно большую группу видов, обладающих сходными внешними признаками и часто внутренними свойствами. Однако химическая природа большинства их совершенно неизвестна, почему не следует забывать, что сходство между теми или другими представителями этого класса может быть чисто физическим. Классификация асфальтовых веществ, в виду неопределенности химического состава компонентов их в первичном состоянии, представляет большие затруднения и носит условный характер. Близкое аналитическое определение в большинстве случаев даже невозможно. [c.353]

    Абсолютные значения многих термбдинамических - функций (внутренней энергии, энтальпии и др.) для какого-нибудь данного вещества в настоящее время неизвестны, но изменения этих функций при переходе вещества из одного состояния в другое часто могут быть определены. Это дает возможность характеризовать значение рассматриваемой функции в интересующем состоянии по сравнению до значением ее в другом состоянии. Сопоставляя значения функции для различных состояний данного вещества, рассматривают отличие их от значения, относящегося к одному определенному состоянию (стандартное состояние). Так, свойства компонентов в растворах различной концентрации сравнивают со свойствами тех же компонентов в чистом состоянии при той же температуре, свойства неидеальных газов часто сопоставляют со свойствами их в состоянии идеального газа при той же температуре и при том же давлении (или при давлении р=1 атм).  [c.183]


Смотреть страницы где упоминается термин Определение неизвестных веществ по их свойствам: [c.444]    [c.50]    [c.56]    [c.155]    [c.185]   
Смотреть главы в:

Сборник задач и упражнений и усложненных задач с решениями по химии -> Определение неизвестных веществ по их свойствам




ПОИСК





Смотрите так же термины и статьи:

Свойства веществ



© 2024 chem21.info Реклама на сайте