Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворение физическая теория

    Жидкие растворы по своей природе, свойствам, характеру взаимодействий между частицами очень разнообразны, в связи с чем трудно создать единую количественную теорию, описывающую поведение различных растворов в широкой области концентраций. Наука о растворах —одна из наиболее старых областей естествознания, в развитие которой сделан вклад многими исследователями. В ходе развития учения о растворах были высказаны две точки зрения на природу растворов —физическая и химическая. Физическая теория растворов, возникшая главным образом на основе трудов Вант-Гоффа, Аррениуса и Оствальда, опиралась на экспериментальное изучение коллигативных свойств разбавленных растворов (осмотическое давление, новышение температуры кипения, понижение температуры замерзания раствора и т. п.), зависящих главным образом от концентрации растворенного вещества, а не от его природы. Количественные законы (законы Вант-Гоффа, Рауля) были открыты в предположении, что в разбавленных растворах молекулы растворенного вещества подобны молекулам идеального газа. Отступления от этих законов, наблюдаемые для растворов электролитов, были объяснены на основе теории электролитической диссоциации Аррениуса. Простота представлений физической теории и успешное применение ее как для объяснения свойств растворов электролитов, так и для количественного изучения электрической проводимости растворов обеспечили быстрый успех этой теории. Химическая теория растворов, созданная преимущественно Менделеевым и его последователями, рассматривала процесс образования раствора как разновидность химического процесса, характеризующегося взаимодействием частиц смешивающихся компонентов. Менделеев рассматривал растворы как системы, образованные частицами растворителя, растворенного вещества и неустойчивых химических соединений, которые образуются между ними и находятся в состоянии частичной диссоциации. В классических трудах Менделеева четко сформулированы основные положения теории растворов. Менделеев указывал на необходимость использования всей суммы химических и физических сведений о свойствах частиц, [c.344]


    Таким образом, растворы не могут быть отнесены к химическим соединениям. Но, с другой стороны, они не могут быть, причислены и к простым механическим смесям. Занимая промежуточное положение, растворы представляют жидкие диссоциационные системы, образованные частицами растворителя, растворенного тела и тех определенных нестойких, но экзотермических соединений, которые между ними происходят, одного или нескольких, смотря по природе составляющих начал . В приведенных словах Д. И. Менделеева (1887 г.) заключена основная сущность развитой им химической теории растворов. Последняя принципиально отличается от физической теории, которая рассматривает растворитель лишь как инертную среду и отвергает наличие сольватов в растворах (т. е. по существу приравнивает их к простым механическим смесям). В настоящее время точка зрения Менделеева на природу растворов является общепризнанной. [c.155]

    Осмотическое давление, изменение температур кипения и замерзания растворов и некоторые другие свойства разбавленных растворов, зависящие только от концентрации, но не от природы растворенных веществ, называются коллигативными свойствами. Их изучение привело к формированию физической теории растворов (см. 120). [c.360]

    Впоследствии Менделеев признал ван<ную роль физического фактора прн образовании растворов, но высказывался против крайнего, чисто физического взгляда на природу растворов. Он писал Две указанные стороны растворения (физическая и химическая—автор) и гипотезы, до сих пор приложенные к рассмотрению растворов, хотя имеют отчасти различные исходные точки, но без всякого сомнения со временем, по всей вероятности, приведут к общей теории растворов, потому что одни общие законы управляют как физическими, так и химическими явлениями, ибо лишь от свойств и движений атомов, определяющих химические взаимодействия, зависят свойства и движения частнц, составленных из атомов и определяющих физические соотношения (Д. И. Менделеев, Сочинения, том IV, Растворы, стр. 530, 1937). [c.167]

    Физическая теория растворов получила особенное развитие после 80-х годов прошлого века в связи с успехами в изучении разбавленных растворов (Вант-Гофф, Аррениус, Оствальд). Была создана первая количественная теория растворов, связанная с представлением о растворенном веществе как о газе, распространяющемся в инертном растворителе. Однако вскоре было обнаружено, что количественная теория Вант-Гоффа—Аррениуса справедлива только для очень разбавленных растворов. Многие факты указывали на взаимодействие компонентов раствора. Все попытки рассмотреть с единой точки зрения растворы любых кон-центраций приводили к необходимости учета химического фактора и подтверждали правильность многих мыслей Д. И. Менделеева, критиковавшего физическую теорию. [c.167]


    Сторонники физической теории растворов трактовали образование раствора как суммарный результат молекулярного движения и взаимного сцепления частиц, т. е. полагали, что при растворении доминируют физические процессы смешения веществ друг с другом. Наоборот, приверженцы химической теории подчеркивали преобладающую роль взаимодействия между различными частицами в растворе, полагая, что силы, действующие в растворах, чисто химические, только менее интенсивные. Эти крайние точки зрения дополняют друг друга. Поэтому правильнее было бы не противопоставлять их, а объединять, подчеркивая при этом, что в зависимости от природы компонентов растворов и условий их образования (соотношение между веществами, температура, давление) влияние физических и химических факторов может быть различным. Основу современной теории растворов и составляет синтез этих точек зрения. Единое представление о растворах бьию дано Д. И. Менделеевым. Рассматривая растворы как смеси непрочных химических соединений определенного состава, находящихся в состоянии частичной диссоциации, он подчеркивал необходимость создания общей теории растворов, способной объяснить с единой точки зрения все наблюдаемые факты. [c.133]

    Менделеев не отрицал роль физического фактора при образовании растворов. Он писал Две указанные стороны растворения (физическая и химическая) и гипотезы, до сих пор приложенные к рассмотрению растворов, хотя имеют отчасти различные исходные точки, со временем приведут к общей теории растворов, потому что одни общие законы управляют как физическими, так и химическими явлениями . Взгляды Д. И. Менделеева полностью подтвердились. В настоящее время процесс растворения рассматривают как физико-химический процесс, а растворы — как физико-химические системы. [c.140]

    Основы физической теории растворов были заложены уже во второй половине XIX в. Сванте Аррениусом и Вант-Гоффом. Согласно этой теории процесс растворения рассматривается как чисто физический процесс равномерного распределения частиц растворяемого вещества по всему объему растворителя, который представляет собой некую индифферентную среду. При этом допускают, что никакого взаимодействия между молекулами растворителя и частицам растворенного вещества не существует. Физическая теория растворов подкреплялась тем, что целый ряд свойств растворов — повышение температуры кипения, понижение температуры замерзания, давление пара, осмотическое давление —действительно зависит только от концентрации растворенного вещества, но не зависит от его природы. Таким образом, растворы, со- [c.80]

    Согласно физической теории (С. Аррениус, В. Оствальд, Я. Вант-Гофф), процесс растворения рассматривают как равномерное распределение частиц растворенного вещества по всему объему растворителя. Растворитель принимают за индифферентную среду. [c.70]

    Вант-Гофф рассматривал процесс растворения только как физическое явление, не учитывая природы растворенного вещества и растворителя, химизма растворения. В этом основной недостаток физической теории растворов. [c.202]

    Как видим, в споре представителей химической теории растворов Менделеева и физической теории растворов, предложенной Аррениусом, Оствальдом и Вант-Гоффом, правы были обе стороны. Действительно, взаимодействие между компонентами раствора, сольватация, протекает всегда, однако не всегда это взаимодействие сопряжено с образованием стехиометри-ческих соединений. Но как бы то ни было, растворенные соединения всегда сольватирован ы и поэтому взаимодействие в растворе двух соединений А и В точнее следовало бы описать схемой  [c.27]

    Отличительной особенностью их, как было отмечено ранее, является межмолекулярное взаимодействие частиц растворенного вещества и молекул растворителя. В связи с этим для таких растворов резкое отличие в поведении частиц растворенного вещества и растворителя отсутствует. Образование растворов неэлектролитов, как правило, не сопровождается существенными химическими изменениями. Поэтому изучение их свойств Послужило основой для создания физической теории растворов, в которой главную роль играла не природа растворенных частиц, а их количество. [c.213]

    Обычно свойства разбавленных растворов электролитов делят на две группы. К первой группе относят свойства, не зависящие для данного растворителя от природы растворенного вещества. Это давление насыщенного пара растворителя над раствором, повыщение температуры кипения и понижение температуры затвердевания по сравнению с растворителем, осмотическое давление и др. Проявление растворами таких свойств послужило основой для создания физической теории растворов. Ко второй группе относят свойства, зависящие в данном растворителе от природы растворенного вещества,— тепловые эффекты растворения, электропроводность, оптические и др. [c.225]


    Физическая теория растворов. Предложена Вант-Гоффом и Сванте. Аррениусом во второй половине прошлого столетия. Согласно этой теории, растворитель рассматривается в качестве некоторой индифферентной среды, в которой при растворении вещества его молекулы равномерно распределяются (размешиваются) по всему объему раствора. При этом принимается отсутствие межмолекулярного взаимодействия как между частицами растворенного вещества, так и между последними и молекулами растворителя. [c.159]

    Из своих опытов Пфеффер не вывел заключения, что осмотическое давление равно газовому. Это было сделано голландским ученым Вант-Гоффом (1886). Открытие Вант-Гоффа легло в основу так называемой физической теории растворов, которая рассматривает явление растворения как дезагрегацию растворенного вещества в среде растворителя. [c.143]

    Осмотической теорией растворов называется глава физической теории, рассматривающая свойства растворителя в растворе как функцию осмотического давления растворенного вещества. С помощью термодинамики для разбавленных растворов, т. е. таких растворов, при разбавлении которых уже не наблюдается теплового эффекта, выведены соотношения между осмотическим давлением растворенного вещества и давлением пара растворителя в растворе, его температурой перехода в твердое состояние, его М и температурой кипения. [c.157]

    Будучи сторонником физической теории растворов ( 2), Аррениус не учитывал взаимодействия растворенного вещества с растворителем и считал, что молекулы распадаются на свобод-ные ионы, например, по схеме  [c.169]

    Обширные исследования свойств растворов, предпринятые около 100 лет назад, привели к созданию так называемой физической теории растворов. В основу ее была положена аналогия между растворами и смесями газов. Иначе говоря, допускалось, что молекулы растворенного вещества и растворителя в известной мере индифферентны (безразличны) по отношению друг к другу. Такая ситуация возможна, если энергия взаимодействия разнородных частиц в растворе мала и равна энергии взаимодействия однородных частиц. Физическая теория растворов является как бы антиподом химической теории Д. И. М е н-д е л е е в а. И хотя, как мы знаем, химическим взаимодействием молекул растворителя и растворенного вещества пренебрегать нельзя, количественные закономерности, лежащие в основе физической теории, сыграли важную роль в химии растворов. Разработанная физическая теория хорошо описывала поведение растворов неэлектролитов — веществ, растворы которых не проводили электрический ток. Однако все попытки применения найденных количественных закономерностей для оценки поведения растворов электролитов — веществ, растворы которых проводят электрический ток, не увенчались успехом. [c.67]

    Физическую теорию газовой смеси критиковал К. Бертолле и другие ученые, которые поддерживали теорию химического растворения газов атмосферы. Это помогло Дж. Дальтону подтвердить свои идеи. Вместе с У. Генри Дж. Дальтон сформулировал закон растворимости газов в жидкостях Если некоторое количество воды, свободной от воздуха, взбалтывается со смесью двух или более газов, то вода. поглотит такое же количество каждого газа, как если бы он присутствовал отдельно при той же плотности 2. [c.77]

    Физическая теория растворов развивалась главным образом трудами Вант-Гос )фа, Рауля, Аррениуса. Исходным положением ее является утверждение об отсутствии взаимодействия растворенного вещества с растворителем растворитель рассматривается как индифферентная среда. [c.146]

    У1еханизм и причины электролитической диссоциации. В 1887 г. С Аррениус выдвинул гипотезу о том, что электролиты в воде диссоциируют (распадаются) на положительно и отрицательно заряженные частицы — ионы. Увеличение числа частиц в растворе вследствие электролитической диссоциации обусловливает отклонение от законов Рауля и Вант-Гоффа. Изотонический коэффициент показывает, во сколько раз увеличивается общее число частиц в растворе вследствие диссоциации электролита. Согласно Аррениусу диссоциирует лишь часть молекул, причем процесс имеет обратимый характер. Процесс электролитической диссоциации электролита КА на ионы и А , по Аррениусу, имеет вид КАч=ь + А". Как было установлено позднее, это уравнение можно написать лишь для так называемых слабых электролитов. Аррениус исходил из физической теории растворов. Эта теория рассматривала растворы как механическую смесь молекул и ионов растворенного вещества с молекулами растворителя, между которыми нет никаких видов взаимодействия. На основании физической теории трудно объяснить разрыв прочных химических связей диссоциирующих молекул. [c.152]

    Д. И. Менделеев придавал также большое значение и физической теории растворов. В 1906 г. в Основах химии он писал Две указанные стороны растворения и гипотезы, до сих пор приложенные к рассмотрению растворов, хотя имеют отчасти различные исходные точки, но без всякою сомнения со временем, по всей вероятности, приведут к общей теории растворов, потому что одни общие законы управляют как физическими, так и химическими явлениями .  [c.146]

    В конце XIX в. наметилось два наиравления в изучении растворов. Согласно одному из них, растворы рассматривались как чисто физические системы, в которых растворитель играет роль индифферентной среды, а растворенное вещество распределяется по объему аналогично газу (физическая теория разбавленных растворов Я. Вант-Гоффа). [c.203]

    Я. Вант-Гофф, как уже указывалось, был сторонником физической теории растворов. Он считал, что растворитель по отношению к растворенному веществу ведет себя совершенно индифферентно и, следовательно, удаление или введение растворителя не изменяет свойств системы. Однако это справедливо только для случая сильно разбавленных растворов. Концентрированные растворы отступают от закона Вант-Гоффа, и тем сильнее, чем выше их концентрация. [c.215]

    Основатель физической теории растворов Вант-Гофф рассматривал процесс растворения подобным испарению. Поведение растворенного вещества в растворителе он сравнивал с поведением газа, распределенного в другом газе. В соответствии со взглядами Вант-Гоффа, вода (или другой растворитель) играет для растворяюще-гося вещества такую же роль, как пустота или разреженное пространство для газа. Растворяемое вещество стремится равномерно распределиться по всему объему растворителя. [c.181]

    В жидких растворах частицы растворенного вещества связаны с окружающими их частицами растворителя. Эти комплексы называются сольватами, а для водных растворов гидратами. Подобное представление о растворах возникло еще в 60-х годах XIX в. в результате работ Д.И. Менделеева. На основании экспериментальных фактов он выдвинул предположение о существовании в растворах определенных химических соединений растворенного вещества с водой. Эта идея составила основу химической теории растворов. Химическая теория растворов принципиально отличается от физической теории, которая рассматри- [c.142]

    Аррениус был сторонником физической теории растворов и не учитывал взаимодействия растворенного вещества с растворителем, поэтому теория Аррениуса не могла объяснить причину диссоциации электролитов. Современные представления о причинах и механизме сложились на основе химической теории растворов Д. И. Менделеева и развиты в работах И, А. Каблукова и В. А, Кистяковского. [c.148]

    Прежде чем перейти к примерам, следует отметить, что вопрос о растворимости неэлектролитов был детально рассмотрен Гильдебрандом и Скоттом [921]. Они обсудили (гл. XI) различные химические и физические теории, учитывающие взаимодействия, которые, подобно Н-связи, ответственны за крайние отклонения от регулярности. Оба подхода приводят к уравнениям, которые годятся для описания экспериментальных данных. В первом случае этого достигают путем установления связи между константами равновесия предполагаемых реакций и коэффициентами активности, во втором — путем подбора величин энергии взаимодействия и эмпирических выражений для эффективного объема молекул растворенного вещества и растворителя. Авторы работы [921] приходят к выводу, который остается справедливым и поныне, что существующие теории не могут считаться удовлетворительными. [c.44]

    Мы уже упоминали, что наряду с химической теорией и как бы в противовес ей развивалась физическая теория растворов. Сторонники этой теории считали, что растворы—это однородные смеси молекул, в которых состояние растворенного вещества подобно состоянию газа. [c.24]

    Исследования, выполненные сторонниками физической теории растворов, содействовали развитию учения о растворах не в мень шей степени, чем труды тех, кто отстаивал химическую точку зрения. Одной из основных заслуг Вант-Гоффа, Гиббса и др. было введение в теорию растворов термодинамического метода. В дальнейшем этот метод стал одной из основ теории растворов. Но даже в период наибольшего увлечения теорией Вант-Гоффа и Аррениуса в научной литературе имелись указания на неполноту аналогии между состояниями вещества в растворе и в газе, на несовершенство физико-механической точки зрения на растворы. Известный физико-химик И. А. Каблуков уже в 1891 г. подчеркивал, что растворитель, действуя на растворенное тело, изменяет его физические и химические свойства, и от величины взаимодействия между растворенным телом и растворителем зависят свойства раствора [7]. [c.25]

    В растворах неэлектролитов компоненты представляют собой нейтральные частицы атомно-молекулярной степени дисперсности. Примером могут служить растворы благородных газов, спиртов и других типичных неэлектролитов в неводных растворителях. Отличительной особенностью таких растворов, как указано выше, является межмолекулярное взаимодействие частиц растворенного вещества и молекул растворителя. Образование растворов неэлектролитов, как правило, не сопровождается существенными химическими изменениями. Поэтому изучение их свойств послужило основой для создания физической теории растворов, в которой главную роль играла не природа растворенных частиц, а их количество. [c.9]

    Химические явления в процессе растворения впервые были отмечены Д. И. Менделеевым. Химическое взаимодействие молекул растворителя с частицами растворенного вещества называется сольватацией, а получающиеся при этом соединения —сольватами. Частный случай взаимодействия частиц растворенного вещества с растворителем — водой был назван гидратацией, а продукты взаимодействия (например, H2S04 H20) — гидратами. Гидратная теория растворов объяснила целый ряд явлений, наблюдавшихся при растворении и противоречащих физической теории растворов. Считая растворение дроблением вещества, сопровождающимся увеличением объема последнего, физическая теория могла лишь объяснить поглощение тепла при растворении.точки зрения гидратной теории закономерно и выделение теплоты, так как образование гидратов — обычно экзотермический процесс. Получило объяснение и скачкообразное изменение некоторых свойств растворов (например, плотности р или ее производной по концентрации dp/d ) при непрерывном изменении содержания растворенного вещества. Скачкообразное изменение свойств отвечает изменению состава продукта взаимодействия растворителя с растворенным веществом — гидрата-при увеличении (или уменьшении) содержания растворенного вещества в растворе. [c.146]

    Многие крупные химики и физики XVII—XVIII вв. в той или иной форме пользовались атомистической гипотезой для объяснения свойств и состава материи и некоторых физических (теория теплоты) и химических (теория растворения) процессов. В спою очередь, из химии опи привлекали материал для иллюстрации и аргументации отдельных положений (существование первичных элементов) атомистической гипотезы. [c.121]

    В пособии рассматриваются основные вопросы теории строения заряженных границ раздела фаз и кинетики электродных процессов, а также развитие теоретических представлений о строении двойного слоя. Приводятся краткие сведения о строении двойного электричсско1 о слоя на границах раздела раствор — диэлектрик (воздух), расплав — металл и раствор — полупроводник. Излагаются закономерности электрохимической кинетики, связанные с подводом реагирующего вещества к понерхности электрода, физические основы современной квантово-механической теории электродных процессов. Описаны процессы электроосаждепия, анодного растворения и теории коррозии металлов. [c.384]

    В конце XIX в. получила распространение физическая теория растворов, в которой процесс растворения веидеств рассматривался как их распределение в инертной среде без химического взаимодействня. В соответствии с этой теорией предполагалось, что движение частиц растворенного вещества аналогично хаотическому движению молекул газа. Физическая теория применима к газовым растворам. [c.70]

    Растворы. Классификация растворов. Растворитель и растворенное вещество. Общие свойства истинных растворов. Насыщенный, пересыщенный и ненасыщенный раствор. Способы выражения состава раствора (массовая доля вещества в растворе, молярная концентрация, нормальная концентрация). Физическая теория растворов Я. Вант-Гоффа и С. Аррениуса. Химическая теория растворов Д. И. Менделеева. Сольваты, гидраты, кристаллогидраты, кристаллизационная вода. Растворение веществ как физико-химический процесс. Тепловой эффект процесса растворения. Растворимость веществ. Факторы, влияющие на растворимость веществ. Электролиты и неэлектролиты. Теория электролитической диссоциации С. Аррениуса. Степень электролитической диссоциации. Зависимость степени диссоциации от природы электролита, природы растворителя, концентрации и температуры раствора. Кажущаяся степень диссоциации сильных электролитов. Константа электролитической диссоциации. Диссоциация воды. Ионное произведение воды. Водородный показатель. Ионно-молекулярные уравнения реакций. Гидролиз солей. Факторы, влияющие на процесс гидролиза. Степень и константа гидролиза. [c.5]

    Несмотря на то что адсорбция из растворов используется в технологии у ке давно, теория адсорбции растворенных веществ разработана значительно слабее, чем теория адсорбции газов и паров. Одна из основных причин заключается в том, что до сих нор мало разработана теория строения жидкостей, особенно теория строения жидкой воды. Физическая теория водных растворов органических веществ находится в самой начальной стадии развития. Это, естествепно, затрудняет создание строго физической теории адсорбции из растворов. Однако возрастающее значение адсорбции для технологии очистки промышленных сточных вод заставляет уделять особое внимание теории адсорбции органических веществ из водных растворов и особенно анализу условий, определяющих адсорбционное равновесие при адсорбции нескольких компонентов смеси растворенных веществ. [c.3]

    Развитие Менделеевым учения о растворах совпало по времени с развитием Вант-Гоффом физической теории растворения многие исследователи были увлечены физической точкой зрения на растворы и не придавали должного внимания взглядам Менделеева. Рядом исследователей было показано, что не всегда образование соединений соответствует излому на кривых. Действительно, как оказалось, метод Менделеева имеет ряд недостатков и приводит к обнаружению несуществующих гидратов. С критикой взглядов Менделеева выступили А. Г. Дорошевский, Нернст и др. [c.15]

    Сторонники химической теории растворов считали, что силы, действующие в растворах, являются чисто химическими и отличаются лишь слабой интенсивностью. Их противники полагали, что растворение—чисто физический процесс смешения веществ друг с другом. Каждое из этих направлений выдвинуло своих выдающихся представителей. Химическую теорию растворов отстаивали Бертолле и Менделеев, Курнаков и Долезалек. Физическую теорию защищали Гей-Люссак, Вапт-Гофф, Аррениус, Нернст. Каждая из этих теорий искала и находила поддержку в эксперименте и, казалось, имела право считать себя обобщением опыта. В нашу задачу не входит детальный анализ развития физического и химического направлений в учении о растворах. Мы попытаемся лишь в самых общих чертах охарактеризовать содержание и значение обоих этих направлений. [c.23]

    Водные растворы благородных газов и других неполярных веществ характеризуются целым рядом аномальных свойств, которые не нашли пока удовлетворительного объяснения в физических теориях. Значительно большего успеха удалось достичь при использовании в теоретических построениях модельных представлений и расчетов. Одной из первых таких работ является статья Эли [53], который предложил разделить процесс растворения на две стадии образование полости в воде (процесс Л) и переход в эту полость атома благородного газа (процесс В). При этом полагалось, что вследствие ажурного строения воды при 277 К процесс Л не сопровождается какими-либо изменениями ее свойств. Уменьшение растворимости с ростом температуры Эли объясняет происходящим при этом переходом воды в более плотно упакованное состояние и возрастанием роли процесса А. Однако данное на этой основе объяснение Hajm4HH минимумов на кривых температурных зависимостей растворимости газов в воде представляется неубедительным, так как из этих рассуждений следует, что температура минимальной растворимости газа с ростом радиуса атома благородного газа должна смещаться в низкотемпературную область. Такой вывод противоречит современным экспериментальным данным. [c.115]


Смотреть страницы где упоминается термин Растворение физическая теория: [c.167]    [c.135]    [c.100]    [c.122]    [c.31]   
Электрохимия растворов издание второе (1966) -- [ c.5 ]




ПОИСК





Смотрите так же термины и статьи:

Теория растворения



© 2025 chem21.info Реклама на сайте