Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стронция с кристаллами

    Атомы кальция, стронция и бария, обладая электронной конфигурацией Зр 4 , 4р 55 и 5р 6 , имеют несколько меньший второй ионизационный потенциал по сравнению с Al,Mg,Be. При формировании кристалла оба валентных 5-электрона делокализуются. Возникшие ионы имеют заполненные р-оболочки, что способствует образованию объемно-центрированной решетки. Плавление кальция, стронция и бария не сопровождается изменением расположения ионов, тип их упаковки напоминает распределение атомов щелочных металлов. Свинец (конф. [c.176]


    Поместите в одну пробирку 2—3 капли раствора соли кальция, в другую — стронция и в третью — бария. В каждую пробирку внесите по 2—3 кристалла хлорида аммония. Встряхните пробирку для перемешивания растворов и к каждому из них добавьте 3—5 капель раствора гексациано-(П)феррата калия К4[Ре(СМ)б1. Растворы слегка нагрейте и дайте им постоять. [c.223]

    При охлаждении выпадает гексагидрат стронция в виде бесцветных кристаллов. Выше 60 °С кристаллизуется соль с двумя молекулами воды. Гексагидрат во влажном воздухе расплывается. Хранить его следует в плотно закрытой склянке или запаянной ампуле. [c.152]

    Указать пары металлов, у которых вероятность образования смешанных кристаллов в сплавах наибольшая. Будут ли образовываться смешанные кристаллы при сплавлении а) стронция и никеля б) стронция и меди  [c.58]

    Образование кристаллов сульфата кальция — характерная микрокристаллоскопическая реакция. Предельное разбавление С 1 5-10 рО=4,7 чувствительность 0,04 мкг. Стронций и барий мешают при соотношении 10 ч. к 1 ч. Са +. Катионы РЬ + мешают, если их очень много. [c.172]

    Гидриды. Гидриды кальция, стронция и бария являются ионными соединениями и в чистом виде представляют собой бесцветные кристаллы (гидрид магния — полярное соединение). Восстановительная активность гидридов возрастает от ВеНг к ВаНг- В практике чаще всего используется гидрид кальция СаНг в порошковой металлургии и как осушающее средство для обезвоживания трансформаторных масел. [c.48]

    Для бериллия и магния характерны кристаллы с гексагональной плотной упаковкой. Кристаллы стронция имеют кубическую гране-центрированную решетку. Кальций при высокой температуре образует кристаллы с гексагональной плотной упаковкой, а при низкой — с гранецентрированной кубической решеткой. Объемно центрированная упаковка отличает кристаллы бария. Существенные различия в строении пространственных кристаллических решеток обусловливает незакономерное (не монотонное) изменение таких физических свойств этих металлов, как плотность, температура плавления и кипения (табл. 23). [c.294]

    Осаждение серной кислотой и растворимыми сульфатами. В полумикропробирке к 1—2 каплям раствора хлорида бария добавляют по каплям раствор серной кислоты или сульфата натрия. Выделяется белый мелкокристаллический осадок сульфата бария, не растворимый в кислотах. Мешают катионы стронция, свинца, ртути (I), образующие плохорастворимые сульфаты. Сульфат бария в отличие от сульфата свинца не растворим в щелочах. В насыщенном растворе перманганата калия от серной кислоты выпадает фиолетовый осадок сульфата бария, который не обесцвечивается восстановителями. Фиолетовый осадок образуется потому, что перманганат калия изоморфен сульфату бария. Образуются смешанные кристаллы. Предельное разбавление 1 5-10 рС 5,7. Обнаруживаемый минимум 10 мкг. [c.173]


Рис. 36. Кристаллы хромата стронция Рис. 36. Кристаллы хромата стронция
    Хромат стронция кристаллизуется в виде моноклинических призм и пластинок, образующих пучки из длинных тонких игл. Из разбавленных растворов выделяются крупные кристаллы в [c.57]

    Свойства. Черные кристаллы или порошок. Применяют при определении бария, кальция, магния, стронция при pH [c.275]

    Сведения о миграционном режиме пока получены только для захвата стронция кристаллами сульфата бария из водного раствора [96]. Систему BaS04 —Sr2+—HgO исследовали следующим образом. Сливали растворы KgSO и BaGlg (последний содержал микроколичества Sr и Ва). Концентрацию растворов подбирали так, чтобы исходное насыщение среды g, составляло 500, а концентрация КС1 в среде — 5 10 М. Смесь растворов перемешивали при 25 °С (Re [c.106]

    Na+ и з С1 в чистых и допированных стронцием кристаллах хлорида натрия (см. гл. IV), определения электропроводности и чисел переноса и заключительного математического анализа с помощью электронно-вычислительной машины М. [c.49]

    Свойства. Металлы серебристо-белого цвета, причем блестящими остаются на воздухе только Ве и М , а Са, 5г и Ва быстро покрываются пленкой из оксидов и нитридов, которая не обладает защитными свойствами (в отличие от оксидной пленки на пове 1х-ности Ве и Mg) при хранении на воздухе Са, 8г и Ва разрушаются. Температуры плавления и твердость металлов подгруппы ИА значительно выше, чем щелочных. Барий по твердости близок к свинцу, но в отличие от последнего при разрезании легко крошится, разделяясь на отдельные кристаллы бериллий имеет твердость стали, но хрупок. Радий сильно радиоактивен, период полураспада его 1620 лет подвергаясь а-распаду, он превращается в радон. Некоторые свойства металлов подгруппы ПА указаны в табл. 3.2. Кальций, стронций, барий и радий называют щелочноземельнымн металлами (во времена алхимии и позднее многие оксиды металлов считали разновидностями земли, землями ). [c.311]

    Эти процессы приводят к образованию рацемических смесей. Однако считается, что при спонтанной кристаллизации происходило разделение смесн. Наиболее вероятно, что разделение проходило случайным образом. Видимо, определяющую роль в разделении оптически активных соединений путем селективного комплексоебразования одного определенного стереоизомера играли минералы, как, например, природные асимметричные кристаллы кварца, и ионы металлов. В конце К01Щ0В, стереоселективная полимеризация олефинов на поверхности металлов (катализаторы Циглера — Натта) представляет собой хорощо изученный промышленный процесс для получения изотактических полимеров. Известно также, что связывание ионов металлов весьма важно для многих биохимических превращений. Такое связывание существенно для поддержания нативной структуры нуклеиновых кислот и многих белков и ферментов. Процесс отбора оптических изомеров мог происходить вследствие других физических явлений, например взаимодействие с радиоактивными элементами, радиация или космические лучи. Недавно проведенные эксперименты с стронцием-90 показывают, что D-ти-роэин быстрее разрушается, чем природный L-изомер. Весьма заманчиво привлечь эти факторы для объяснения происхождения диссимметричности в процессах жизнедеятельности. [c.186]

    Выпавший осадок гидроксида стронция быстро отсасывают иа воронке с пористой стеклянной пластинкой, промывают прокипяченной и холодной водой и сушат при 80—100 °С. Получающийся гидроксид стронция представляет собой иро.зрачные мелкие кристаллы, быстро тускнсюп не на воздухе вследствие образования карбоната стронция. Хранить его нужно в плотно закрытой склянке. [c.152]

    Гидроокись стронция 8т(ОИ), -8НаО — прозрачные бесцветные кристаллы, плотность 1,9 г/см . При нагревании выше 100 С теряет кристаллизационную воду. Жадно соединяется с двуокисью углерода. [c.344]

    Получение и свойства. Строение кристаллических решеток. Получают эти металлы обычно электролизом расплавленных хлоридов, магний — также восстановлением оксида MgO углем в электрических печах и другими способами. Барий чаще всего получают алюминотермическим способом. Бериллий, магний и при высокой температуре кальций образуют кристаллы с гексагональной плотной упаковкой, а стронций и при низкой температуре кальций имеют кубическую гранецентрированную решетку. Для бария характерна объемноцентриро-ванная упаковка. Это различие решеток играет некоторую роль в нарушении закономерности различий плотности, температур плавления и других физических свойств. Атомы их, кроме бериллия, теряют два электрона, превращаясь в ионыЭ . Но их восстановительная способность слабее, чем у щелочных металлов. [c.275]

    Анализ проводят следующим образом. К водному раствору, содержащему мнкроколичества ионов свинца, прибавляют раствор нитрата стронция 8г(МОз)2 и раствор сульфата калия K2SO4. Образующийся осадок сульфата стронция SrS04 увлекает вместе с собой из раствора ионы свинца в виде сульфата свинца PbS04, который в рассматриваемых условиях формирует изоморфные кристаллы с сульфатом стронция ионы РЬ занимают в кристаллической решетке места ионов (размеры [c.238]


    В зависимости от зарядов ионов, замещающих друг друга, различают изовалентные и гетеровалентные замещения. В изовалентном замещении участвуют ионы с одинаковыми электрическими зарядами и близкими ионными радиусами, например, ионы калия, аммония, рубидия, цезия взаимозаменяемы также ионы стронция, бария, радия, магния и железа (П). При гетеровалентном изоморфизме нзаимоза-мещаемы разновалентные ионы равных или близких ионных радиусов. При этом различия в ионных радиусах могут быть значительно большими, чем при изовалентном изоморфизме. Например, ионы Li" можно заместить ионами Mg + (ионные радиусы одинаковы — 0,78 А). Замещаются также ионы Na+ ионами Са +, хотя ионный радиус натрия 0,98 А, а кальция 1,06 А. С другой стороны, ионный радиус меди (I) и натрия соответственно 0,96 и 0,95 А, но медь (I) образует ковалентные соединения, натрий — ионные, поэтому смешанные кристаллы таких медных и натриевых солей не образуются. Ионы с близкими ионными радиусами образуют изоморфные ряды соединений. Чем ближе величины ионных радиусов, тем легче катионы образуют изоморфные соединения. [c.78]

    Вследствие изоморфизма кристаллов сульфат бария, осаждающийся из раствора с примесью перманганата калия, окрашен в розовый или красный цвет при промывании не обесцвечивается, так как частицы КМпО, равномерно распределены во всей массе кристаллов ВаЗО . Изоморфное соосаждение позволяет иногда стабилизировать сами по себе малоустойчивые соединения. Можно, например, получить ЬаЗО в составе изоморфной смеси со ЗгЗО , действуя амальгамой металлического стронция на концентрированный раствор Ьа2(В04)а-При этом образуются изоморфные кристаллы, содержащие сульфаты стронция и лантана (II). [c.79]

    Барит, или тяжелый шпат, представляет собой безводный сульфат бария, кристаллизующийся в той же ромбической сингонии, что и сульфат кальция (ангидрит), но отличающийся от него структурой и размером кристаллов. Как и железистые утяжелители, барпт обладает кристаллической решеткой с прочной ионной связью и максимально плотной упаковкой (координационное число — i2). Устойчивость решетки, образованной крупным комплексным анионом [804] , обеспечивается лишь при сочетании его с крупным двухвалентным катионом. Наибольший атомный радиус у бария (2,24 А). У других катионов — стронция и свинца, образующих безводные сульфаты (целестин и англезит), — размеры атомов меньше (2,15 и 1,741). [c.46]

    Образование твердых растворов (смешанных кристаллов) позволяет осадить те ионы, которые в обычных условиях не осаждаются. Например, сульфаты стронция и свинца образуют смешанные кристаллы, которые можно выделить, добавляя к раствору с малым содержанием РЬ -+ раствор соли стронция и затем избыток сульфата. Весь РЬ выделится с осадком из раствора вместе со ЗгЗО . Свинец отделяют, превратив сульфаты в карбонаты и растворив последние в кислоте. Малое количество мышьяка (V) в виде ионов А504 осаждают вместе с фосфатом магния и аммония, добавляя в раствор ионы РО , МН , М - . Арсенат-ион образует изоморфный твердый раствор с фосфатом, замещая его частично в кристаллической решетке. [c.80]

    Капельная и микрокристаллоскопическая реакция с бихроматом калия. Хромат и бихромат калия выделяют осадок хромата бария ВаСг04 в виде желтых кристаллов. Бихромат калия позволяет осаждать барий в присутствии кальция и стронция, которых он не осаждает. Для полноты осаждения необходимо приме- [c.173]

    Получающаяся гидроокись стронция представляет собой прозрачные мелкие кристаллы, быстро тускнеюище на воздухе вследствие образования карбопата стронция. Хранить ее пужно в плотно закрытой склянке. [c.155]

    Другой важный и широко распространенный метод изучения сплавов основан на приготовлении образцов разного состава и снятии рентгенограмм (особенно порошковых, которые. представляют собой дифракционные картины, создаваемые большим числом кристалликов, имеющих беспорядочную ориентацию). На основании рентгеноструктурного анализа можно определить число фаз в сплаве. Так, образцы сплавов серебра со стронцием, фазовая диаграмма которых приведена на рис. 17.8, дают характерные дифракционные картины для шести соСта-вов - чистое серебро-, чистый стронций и-четыре состава, указанные стрелками. Для сплава с промежуточным составом дифракционная картина показывает линии, характерные для двух фаз, при этом относительные интенсивности этих линий пропорциональны относительным количествам обеих фаз. Кроме того, часто на основании рентгеноструктурного анализа удается определить структуру данного кристалла и таким образом подтвердить его состав. Именно так было идентифицировано соединение Ag5Sг. [c.506]

    Изменения в структуре NaA в сильной степени зависят от парциального давления паров воды. При 600 °С цеолит весьма чувствителен даже к небольшим количествам паров воды. Природа обменного катиона оказывает существенное влияние на стабильность цеолита. Литиевая форма ведет себя так же, как натриевая, в то время как цезий, степень обмена которого не может превышать 30%, увеличивает стабильность цеолита. Аналогично обмен на калий, после того как была достигнута степень обмена, равная 40%, приводит к росту гидротермальной стабильности. Обмен на двухвалентные катионы кальций, магний и стронций повышает гидротермальную стабильность, причем магний вызывает наибольший эффект. Замечено, что с увеличением ионного радиуса двухвалентного катиона стабильность падает. В случае одновалентных катионов наблюдается обратная картина, т. е. д. гя цезия — иона с наибольшим ионным радиусом — имеет место наибольшее увеличение стабильности. Эти результаты, по-видимому, подтверж-данлтся рентгенографическими исследованиями обработанных па-ролг катионообменных форм цеолитов. Электронные микрофотографии согласуются с концепцией, согласно которой разрушение структуры распространяется с поверхности внутрь кристалла. Разрунгение кристалла, вероятно, протекает по механизму расслаивания путем отделения внешних слоев кристалла. За пределами определенного уровня обмена катион уже не повышает устойчивость цеолитов к действию паров воды так, при высоких уровнях обмена наблюдается только весьма небольшое увеличение стабильности. [c.506]

    Молибдаты щелочноземельных металлов нелетучи и устойчивы при высокой температуре. Это используется, в частности, при введении молибдена в ферросплавы в виде молибдата кальция. Молибдаты кальция, стронция и бария осаждаются из растворов в виде белых тяжелых осадков. Плотность молибдата кальция — 4,4—4,5, стронция и бария — около 5. Молибдаты всех трех металлов кристаллизуются в виде бипирамид тетрагональной системы. Кристаллы молибдата магния относятся к триклинной системе (до 350°), что, как и растворимость в воде, отличает его от первых трех молибдатов. MgMo04 хорошо [c.174]

    Вольфраматы щелочноземельных металлов, прежде всего кальция и бария, представляют значительный интерес для техники. Первый находит применение в технологии вольфрама, его соединений и сплавов и используется, как и второй, в радиоэлектронике. Вольфраматы кальция и стронция применяются в качестве люминофоров. Вольфраматы щелочноземельных элементов, за исключением MgWO4, не растворимы в воде. Вольфрамат магния кристаллизуется в безводном состоянии в виде игл моноклинной системы. Образует два кристаллогидрата — с тремя и семью молекулами воды. Это белые порошки или прозрачные кристаллы. Плотность безводной соли 5,66 г/см . Вольфраматы кальция, стронция и бария кристаллизуются в виде прозрачных бипирамид тетрагональной системы. В порошке все они белые. Их плотность соответственно 6,062 6,184 и 6,35 г/см . Растворимость aW04 при 15° 0,0064, при 50° 0,0032, при 100° 0,0012 г/л. При выделении из водных растворов эти вольфраматы чаще осаждаются в виде кристаллогидратов. Безводные соли получаются обычными реакциями  [c.232]

    Тритионаты Рубидия и цезия МегЗзОб выделяются в виде быстро мутнеющих на воздухе кристаллов ромбической и тригональ-ной сиигоний при взаимодействии в водном растворе МегЗзОа и тиосульфата стронция. Тритионат цезия не является изоморфным с тритионатами калия и рубидия [255]. [c.119]

    Всегда было много споров относительно происхождения этих частиц. Во-первых, трудно опровергнуть влияние посредничества микроорганизмов в их образовании. Так, мы должны рассматривать зерна как нескелетные , в то же время признавая возможное микробное влияние. Во-вторых, различные геохимические и минералогические исследования привели к сомнительным результатам при попытках продемонстрировать абиогенное происхождение. Однако недавние работы, основанные на морфологии кристаллов и замещении стронцием, говорит в пользу неорганического осаждения нитчатых илов. [c.175]

    Оптическое изучение крупных монокристаллов подтвердило образование салюстоятельной фазы, обогащенной стронцием. По пере увеличения степени ионного обмена кристаллы растрескиваются, что свидетельствует об образовании фазы цеолита с большей элементарной ячейкой. [c.564]


Смотреть страницы где упоминается термин Стронция с кристаллами: [c.452]    [c.225]    [c.72]    [c.82]    [c.239]    [c.182]    [c.167]    [c.274]    [c.547]    [c.309]    [c.311]    [c.443]    [c.443]    [c.444]    [c.215]    [c.228]    [c.303]    [c.323]   
Ионы и ионные пары в органических реакциях (1975) -- [ c.153 ]




ПОИСК





Смотрите так же термины и статьи:

Стронций



© 2024 chem21.info Реклама на сайте