Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Детонационное число

    Отдельные фракции обычно характеризуют по физическим свойствам и по техническому применению наиболее важными константами являются температура кипения, плотность, вязкость, температура воспламенения и детонационное число. [c.85]

    Детергенты 93 Детонационное число 85 Детонационные свойства бензинов 86 Дефолианты 525 Дециламин 165  [c.1169]


    Основные физико-химические свойства топлив, в том числе бензинов, и влияние этих свойств на работу топливной системы летательного аппарата и двигателя были подробно рассмотрены в гл. П1. Однако учитывая особенности сгорания бензинов в поршневых авиационных двигателях, связанные с возможностью детонационного сгорания, следует более подробно рассмотреть антидетонационные характеристики бензинов. [c.99]

    Октановым числом бензина называется процентное (по объему) содержание изооктана в смеси с нормальным гептаном, эквивалентное по своей детонационной стойкости (в стандартных условиях испытания) испытуемому топливу. Так, например, если октановое число бензина 70, то это означает, что топливо детонирует так же, как смесь 70% изооктана и 30% гептана. [c.100]

    Оценка детонационной стойкости топлив, менее стойких к детонации, чем изооктан, выражается в октановых числах, а для топ-, лив, более стойких к детонации, чем изооктан, — в числах условного октанового числа. Условное октановое число определяется по специальному графику (рис. 58). [c.101]

    Наименьшей детонационной стойкостью обладают жидкие парафиновые углеводороды нормального строения при этом с увеличением молекулярного веса ухудшаются их детонационные характеристики. Октановые числа, определенные по моторному методу, для парафиновых углеводородов имеют следующие значения  [c.102]

    Циклическое строение молекул углеводородов также повышает-их детонационную стойкость. Особенно высока детонационная стойкость ароматических углеводородов. Октановые числа для некоторых циклических углеводородов имеют следующие значения  [c.103]

    Современные авиационные двигатели требуют топлив с высокой детонационной стойкостью. Октановые числа даже наилучших сортов бензинов, полученных из высококачественных нефтей, не превышают 80 единиц. В связи с этим современные авиационные бензины являются смесями бензинов прямой перегонки или каталитического крекинг-процесса с высокооктановыми компонентами и специальными присадками-антидетонаторами. [c.103]

    Наименьшей детонационной стойкостью обладают алканы нормального строения, наивысшей — ароматические углеводороды. ДС цикланов выше, чем у алканов, но ниже, чем у аренов с тем же числом атомов углерода в молекуле. [c.106]

    МТБЭ, по сравнению с алкилатом, обладает более высоким октановым числом и низкой температурой кипения, что в совокупности позволяет повысить октановое число преимущественно головных фракций базового бензина, тем самым и равномерность аспределения детонационной стойкости по его фракциям. [c.148]


    Необходимо отметить, что присутствие в сырье каталитического крекинга бензиновых фракций, выкипающих до 200, как правило, недопустимо. В условиях каталитического крекинга бензиновые фракции прямой гонки трудно крекируются при попадании их в малоизмененном виде в крекинг-бензин снижается его октановое число, т. е. детонационная стойкость. Особенно важно иметь это в виду при производстве автомобильных бензинов. [c.26]

    Детонационная стойкость топлив выражается октановыми числами и сортностью. Эти характеристики находят отражение в индексном обозначении сорта (марки) бензина в виде дроби, причем октановое число ставится в числителе, сортность — в знаменателе. Например, индекс 100/130 означает, что данный бензин имеет октановое число не ниже 100 и сортность не ниже 130. [c.205]

    Подобно тому как детонационные свойства карбюраторных топлив характеризуются октановым числом, склонность дизельных топлив к воспламенению оценивается цетановым числом (ГОСТ 3122—52). [c.209]

    Все образцы, полученные с использованием низкооктановых изомеризатов и МТБЭ, полностью соответствовали требованиям ГОСТ 2084—77 по физико-химическим и антидетонационным свойствам. Использование МТБЭ в составе опытных образцов бензина АИ-93, содержащих низкооктановые изомеризаты, позволило значительно улучшить равномерность распределения детонационной стойкости по фракциям, повысив октановое число легкокипящих фракций. Все испытанные образцы бензинов, содержащие изомеризат и МТБЭ, обладали хорошей физической стабильностью и не имели склонности к образованию паровых пробок. [c.170]

    Зависимость фактических антидетонационных свойств рассмотренных образцов автобензина АИ-93, полученных смешением бензина риформинга с октановым числом 95 (ИМ) и изомеризатов, имеющих различную детонационную стойкость, а также смеси изомеризатов с МТБЭ, от скорости движения автомобиля Жигули ВАЗ-2103 представлена на рис. 6.2. Там же приведены дорожные антидетонационные характеристики товарного бензина АИ-93. [c.170]

    Все исследованные образцы, содержащие по 30% изомеризатов с октановыми числами 87-89, обладали достаточно равномерным распределением детонационной стойкости по фракциям в дорожных условиях и соответствовали требованиям ГОСТ 2084-77. [c.170]

    По физико-химическим и антидетонационным свойствам при определении их в лабораторных условиях опытные образцы бензинов соответствовали требованиям ГОСТ 2084-77 на бензин летнего вида. Бензины, содержащие в своем составе бензин каталитического риформинга с октановым числом 90 (ИМ), изомеризат и МТБЭ, при одинаковом уровне октановых чисел обладали более равномерным распределением детонационной стойкости по фракциям по сравнению с образцами, содержащими бензины риформинга с октановым числом 95 (ИМ). [c.173]

    Ускорение. Ускорение и гибкость в регулировании мощности зависят от испаряемости той части топлива, которая отгоняется в средний период разгонки, т. е. по сути дела зависит от температур 20% и 80%-ного отгона [57]. Для расчета испаряемости в этом интервале трудно предложить какие бы то ни было уравнения, поскольку испаряемость зависит не только от свойств топлива, но и от температуры воздушно-топливной смеси, а температура эта непостоянна. Регулирование мощности осуществляется без помех в тех случаях, когда смесь нагрета заметно выше точки росы, ибо в этих обстоятельствах вполне возможно уменьшать реальное количество горючей смеси, вводимое в двигатель за один цикл. Если топливо обладает повышенной испаряемостью, то его температура в подводящем трубопроводе ниже, чем у другого вида топлива. Снижение температуры смеси сказывается на его анти-детонационной устойчивости, при пони кении температуры на 8—11° С октановое число уменьшается на 1 пункт [58]. [c.399]

    Чем больше молекула, тем шире пределы детонационных характеристик ее изомеров. Пределы могут быть очень широки, ср., например, н-гептан, и 2,2,4-триметилбутан, известный под названием триптан. Триптан имеет самое высокое среди парафиновых углеводородов октановое число, самые высокие смесительные характеристики и характеризуется наиболее высокими критическими степенями сжатия. [c.416]

    С увеличением числа колец повышается детонационная способность. [c.418]

    Октановое число численно равно процентному по объему, содержанию изооктана в таком эталонном топливе, которое по своим детонационным свойствам равноценно проверяемому топливу (бензину или керосину). Октановое число светлых нефтепродуктов определяют по моторному методу ГОСТ 511—66, по температурному методу (1-С) ГОСТ 3337—52 и по исследовательскому методу ГОСТ 8226—66. [c.12]

    При работе двигателя на бензине с октановым числом 40 и впрыскивании в цилиндры 50% по массе (по отношению к бензину) воды детонационная стойкость бензина была повышена на 18 пунктов. С повышением октанового числа исходного бензина антидетонационный эффект от впрыска воды несколько уменьшался. Впрыскивание 10%) воды по отношению к массе бензина эквивалентно повышению октанового числа бензина на 3—4 пункта. Температура паровоздушной смеси при адиабатическом испарении охладителей в потоке воздуха при давлении, незначительно отличающемся от атмосферного, может быть определена из уравнения [c.54]


    Октановое число Детонационная характеристика жидкого топлива (бензина) [c.546]

    Основным назначением каталитического риформинга до настоящего времени остается повышение детонационной стойкости моторных топлив, однако не меньшее значение имеет и применение этого процесса для производства индивидуальных ароматических углеводородов — главным образом бензола, толуола и ксилолов, являющихся наряду с непредельными углеводородами важным сырьем для получения многих химических продуктов, в том числе и полимерных материалов. [c.150]

    Моторный метод применяют для оценки детонационной стойкости бензинов с октановым числом ниже 100 и для двигателей, работающих на бедных смесях . Испытания проводят па установке, [c.103]

    Оценка детонационной стойкости (ДС) бензинов проводится на стандартном одноцилиндровомдвигателес переменной степенью сжатия (УИТ-65). Определение ДС сводится к подбору смеси эталонных угле — подородов, которая при данной степени сжатия стандартного двигателя сгорает с такой же интенсивностью детонации, как и испытуемый бензин. В качестве эталонньгх углеводородов приняты изооктан 12,2,4-триметилпентан) и н-гептан, а за меру ДС принято октановое число (04). 04 изооктана приЕшто равным 100, а гептана — Егулю. [c.104]

    Склонность бензинов к калильному зажиганию. При полной оценке качества автобензинов определяют также их способность к калрльному зажиганию — косвенный показатель склонности к нагарообразованию. Калильное число (КЧ) — показатель, характеризующий вероятность возникновения неуправляемого воспламенения горючей смеси в цилиндрах двигателя вне зависимости от момента подачи искры свечей зажигания. Оно связано с появлением "горячих" точек в камере сгорания (от металлической поверхности и нсгаров). Калильное зажигание делает процесс сгорания неуправляемым. Оно сопровождается снижением мощности и топливной экономичности двигателя и т.д. Калильное зажигание принципиально отличается от детонационного сгорания. Сгорание рабочей смеси после калильного зажигания может протекать с нормальными скоростями без детонации. КЧ выше у ароматических углеводородов (у бензола 100) и низкое у изопарафинов. ТЭС и сернистые соединения повышают склонность бензина к отложениям нагара. Основные направления борьбы с калильным зажиганием — это снижение содержания ароматических углеводородов в бензине, улу шение полноты сгорания путем совершенствования конструк — ций ДВС и применение присадок (например, трикрезолфосфата). [c.109]

    По сравнению с карбюраторными двигателями дизели не пред — ъявл тют столь высоких требований к воспламеняемости топлива, какие предъявляются, например, к детонационной стойкости автобензинов. Товаэные дизельные топлива должны иметь ЦЧ в определенных опти (бальных пределах. Применение топлив с ЦЧ менее 40 приводит к жесткой работе дизеля и ухудшению пусковых свойств топлива. Повышение ЦЧ выше 50 также нецелесообразно, так как возрастает уделЕ.ный расход топлива в результате уменьшения полноты сгорания. Цетановое число дизельного топлива существенно зависит от его фраь ционного и химического состава. Алканы нормального строения и олофины имеют самые высокие ЦЧ, а ароматические ут леводороды [c.115]

    При проектировании н эксплуатации предприятий особое внимание должно уделяться системам сжигания ацетилена и ацетиленсодержащих газоз. Ацетилен, являясь эндотермическим соединением, легко разлагается п при определенных условиях способен к взрывчатому разложению в отсутствие кислорода. Эта характерная особенность, а также широкий диапазон концентрационных пределов воспламенения с кислородом делают ацетиленсодержащие газы особенно опасными и требуют соблюдения дополнительных мер безопасности при их сжигании на факелах. Однако характерные особенности взрывоопасных и детонационных свойств ацетилена не всегда учитываются. Поэтому при эксплуатации производств, связанных с получением и переработкой ацетиленсодержащих газов, происходит большое число аварий. Взрывы ацетиленовоздушных смесей происходили в аппаратуре и трубопроводах факельных систем. Известны случаи разложения ацетилена со взрывом в факельном стволе и прогара ацетиленопроводов на участках между стволом и огнепреградителем. Отмечены случаи загорания н разложения со взрывом в системе, приводившие к разрыву шпилек и отрыву штуцеров в верхней части огнепреградителя. [c.212]

    Испытание разнообразных но химическому составу авиационных бензинов на мощных порпшевых авиационных двигателях показало, что октановые числа, определяемые моторным методом при работе на бедрых смесях, не дают полного представления о детонационной стойкости топлива при работе двигателя на богатой смеси (избыток воздл ха 0,6—0,7). Показателем антидетонационных свойств авиабензина на богатых смесях принята сортность. [c.175]

    Октановые числа характеризуют поведение топлива в автомобильных, а также авиационных двигателях в условиях крейсерского режима на нормальной смеси. По сортности оценивают детонационную стойкость авиационных бензинов в условиях форсированного режима двигателей при работе на богатой смеси с наддувом. Октановое число карбюраторного топлива численно равро процентному содержанию изооктдна в смеси изооктана с нормальным гептаном [c.205]

    Тетраметилсвинец, имеющий температуру кипения 110°С, что примерно соответствует выкипанию 50% бензина, способствует равномерному распределению детонационной стойкости по фракциям бензинов. Это особенно важно при производстве современных товарных бензинов на основе высокоароматизиро-ванного компонента каталитического риформинга, имеющего низкую детонационную стойкость фракций, выкипающих до 100°С [185]. Выравнивание детонационной стойкости по фракциям бензинов за счет применения ТМС существенно повышает дорожные октановые числа бензинов, зависящие в основном от детонационной стойкости легкокипящих фракций. [c.172]

    Изомеризат, полученный в процессе низкотемпературной изомеризации гексановой фракции на катализаторе НИП-74 [87], был подвергнут ректификации с выделением изогексановых фракций с октановыми числами 83,9 85,3 86,8 и 91,4 (ИМ) - табл. 6.5 и 6.6. Для приготовления опытных образцов бензинов кроме изогексановых фракций использовались бензин каталитического риформинга, полученный в условиях жесткого режима на катализаторе КР-104, изопентановая фракция и алкилат (табл. 6.5). Оказалось, что добавление изомеризата улучшает октановую характеристику головной фракции и обеспечивает равномерность распределения октановых чисел по фракциям бензина (табл. 6.7). Приготовленные образцы бензинов исследовались по ГОСТ 2084-77, некоторым показателям квалификационной оценки автомобильных бензинов и были подвергнуты дорожным- детонационным испытаниям по ГОСТ 10373-75. [c.162]

    Снижение октанового числа изомеризата ухудшило равномерность распределения детонационной стойкости по фракционному составу бензина. Разность ДЯюо возросла с 8,1 до 9,7, а коэффициент распределения детонационной стойкости (КРДС) снизился с 0,85 до 0,81. Вовлечение в состав бензинов МТБЭ позволяет снизить октановое число изомеризата до 82,6 (ИМ), увеличить его массовую долю с 25 до 30 и 36%, что одновременно приводит к уменьшению количества бензина каталитического риформинга с 70 до 62 и 54% соответственно (табл. 6.9, образцы 5—7). [c.170]

    Принятый для сухопутных войск и военно-морского флота США индекс сортности А—N определяется на специальном лабораторном двигателе п представляет собой показатель детонационной стойкости, численно равный значению среднего индикаторного давления, определенного при начальной детонации. Эталонным топливом служит пзооктан. Число сортности изооктана, по определению, равно 100. Переход к октановым числам от шкалы сортности осуществляется с помощью -образной кривой, по которой 21,9 на шкале сортности соответствует октановому числу О, а число сортности 161 равно октановому числу изооктана, этилированного , ЪЪЪсм л ТЭС [277, 279]. [c.431]

    Роберт Ф. Керлей из Этил Корпорейшн сообщает (частная информация), что представление о сортности и соответствующая шкапа предложены Службой военной авиации (Милитари Эйр Сервис), в состав которой в 1939— 42 гг. входили Бюро Аэронавтики Военно-морского министерства США и Британская воздушная комиссия. Указывается также, что сам Роберт Ф. Керлей и С. Д. Герон из Этил Корпорейшн тесно связаны с работами по введению этого индекса, см. [278]. Взаимосвязь между мощностью, ограниченной вследствие детонации, и числом отдачи существует далеко не всегда, поскольку для достижения детонационного удара изменяется только степень открытия дроссельной задвижки, в то время как прочие важнейшие характеристики двигателя не изменяются. [c.431]

    Октановое число. Этим показателем оценивают склонность карбюраторного топлива к детонации. Октановое число топлива определяют сравнением его с эталонным топливом. В качестве первичных эталонов приняты недетонирующий изооктан eHia и сильно детонирующий нормальный гептан ,Hie. Детонационная стойкость первого углеводорода (в октановых числах) принята за 100, а второго за 0. Смешивая эти два углеводорода между собой в различных пропорциях, получают эталонные топлива с различной степенью склонности к детонации. [c.12]

    Бензиновые фракции разных нефтей отличаются по содержанию нормальных и иэопарафинов, пяти- и шестичленных нафтенов, а также ароматических углеводородов. Однако, распределение углеводородов в каждой из этих групп в достаточной мере постоянно. Среди парафинов преобладают углеводороды нормального строения нафтены представлены гомологами циклопентана и циклогексана. Такой состав, при содержании парафинов 50-70 % мае. и 5-15 % мае. ароматических углеводородов в бензинах, обуславливает их низкую детонационную стойкость. Октановые числа бензиновых фракций, подвергаемых каталитическому риформингу, обычно не превышает 50-55 МОЧ. [c.2]

    Осуществлять реформинг-крэкинг целесообразнее не под атмосферным, а под высоким давлением в ус.ловиях относительно низких температур и длительного нагревания, так как в этом случае имеют место оптимальные предпосылки для изомеризации. Это показали как исследования над индивидуальными углеводород а м и, так и оценка детонационных свойств реформинг-бензина, подучаемого на заводских установках при различных оперативных дашгениях (при повьш1ении оперативных давлений октановые числа бензинов новьппаются).  [c.76]

    Антидетонационная способность (иначе — детонационная стойкость) пзопарафиновых углеводородов повышается с увеличением числа метильных групп в молекуле ароматических углеводородов — с увеличением молекулярного веса и разветвлением боковых цепей нафтеновых — с разветвлением боковых цепей. Детонационная стойкость олефинов возрастает с приближением двойной связи к центру молекулы. Нормальные парафиновые углеводороды тем больше способны вызывать детонацию, чем больше их молекулярный вес. Из этого можно сделать вывод, что наименьшей детонационной стойкостью обладают те углеводороды, которые легко окисляются кислородом воздуха. При окислении их образуются гидроперекиси. С повыгаением температуры в период сжатия рабочей смеси в цилиндре двигателя гидроперекиси столь быстро распадаются с бурным выделением тепла, что происходит воспламенение образующихся продуктов. Распад гидроперекисей сопровождается образованием промежуточных соединений, способствующих возникновению новых гидроперекисей. Таким образом, окисление топлива приобретает характер цепной реакции. [c.101]

    Детонационную стойкость топлив для карбюраторных двигате-лс11 принято выражать октановыми числами. Определяют их сравнением поведения испытуемого топлива и эталонного топлива в одноцилиндровом стандартном двигателе с неременноп степенью сжатия (рис. 50). В качестве эталонных топлив выбраны изооктаи и н-геп-тан. Антидетонационные свойства изооктапа оценивают условно баллом 100, а и-гентана — 0. Октановое число топлива соответ- [c.102]


Смотреть страницы где упоминается термин Детонационное число: [c.100]    [c.99]    [c.103]    [c.233]    [c.142]    [c.170]    [c.173]    [c.428]    [c.315]    [c.320]   
Курс органической химии (0) -- [ c.85 ]




ПОИСК







© 2025 chem21.info Реклама на сайте