Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Испарение адиабатическое

    Технологическая схема процесса получения стирола каталитическим дегидрированием этилбензола в адиабатическом реакторе представлена на рис. 1Х 4 [110]. Смесь прямого и возвратного стирола разбавляется водяным паром и поступает на испарение и перегрев в систему теплообменников /. Нагретая до 520—530 °С смесь направляется в нижнюю часть вертикального туннельного реактора шахтного типа 2. На входе в реактор к смеси добавляется перегретый водяной пар, расход которого вычисляется из его энтальпии с учетом количества теп- [c.264]


    На таких диаграммах можно легко проследить ход тех изменений, которым подвергается вещество (испарение, конденсация, сжатие, расширение, охлаждение, изменения адиабатические, изотермические, изоэнтальпные и другие). Для любой точки линии изменения можно быстро найти на диаграмме параметры, характеризующие состояние вещества (энтропию, энтальпию, давление, объем, температуру). В работе, связанной с развитием технологического метода, когда обязателен, например, выбор оптимального варианта процесса, проходящего при рассмотренных нами изменениях системы, энтропийные диаграммы незаменимы. Кроме того, следует помнить, что, особенно в областях низких температур и высоких давлений, поведение реальных газов резко отличается от поведения идеального газа, и расчеты по рассмотренным выше уравнениям требуют внесения поправок, трудно поддающихся вычислению, а иногда и не очень точных. Проведение расчетов с использованием энтропийных диаграмм, составленных по экспериментальным данным, обеспечивает получение значительно более точных результатов в короткое время. [c.142]

    При работе двигателя на бензине с октановым числом 40 и впрыскивании в цилиндры 50% по массе (по отношению к бензину) воды детонационная стойкость бензина была повышена на 18 пунктов. С повышением октанового числа исходного бензина антидетонационный эффект от впрыска воды несколько уменьшался. Впрыскивание 10%) воды по отношению к массе бензина эквивалентно повышению октанового числа бензина на 3—4 пункта. Температура паровоздушной смеси при адиабатическом испарении охладителей в потоке воздуха при давлении, незначительно отличающемся от атмосферного, может быть определена из уравнения [c.54]

    При разработке мероприятий, направленных па интенсификацию системы увлажнения воздуха перед АВО, принимают, что 20—30% воды расходуется на адиабатическое снижение температуры воздуха перед теплообменными секциями и 70—80% при ее испарении с оребренной поверхности. Эффект увлажнения характеризуется отношением плотности теплового потока в [c.80]

    Рабочее вещество (пары хладагента) адиабатически сжимается (линия 1—2). При адиабатическом сжатии нет обмена теплотой с окружающей средой, поэтому температура рабочего вещества (паров) за счет совершения механической работы повышается с То до Т. Сжатое рабочее вещество изотермически конденсируется (линия 2—3) за счет отдачи теплоты Q охлаждающей среде при температуре Т. Полученная жидкость адиабатически расширяется (линия 3—4), охлаждаясь до темиературы Та. По линии 4—1 происходит испарение этой жидкости при температуре Го за счет подвода теилоты от охлаждаемого вещества. [c.122]


    Пример VI-7. Холодильная установка, в которой этилен используется как холодильный агент, работает в следующем цикле 1) этилен в состоянии насыщенного пара под давлением Pi = 2 ат (точка /) адиабатически сжимается до Р2 = 8 ат (точка 2) 2) в конденсаторе при постоянном давлении р2 = 8 ат этилен переходит в состояние кипящей жидкости (точка 3) 3) сжиженный этилен расширяется, проходя дроссельный клапан, до давления pi = 2 ат (точка 4) 4) далее испарение этилена проводится при pi = 2 ат до полного его превращения в сухой насыщенный пар, и цикл замыкается в точке 1. Рассчитать работу сжатия и количества теплоты, отводимое в цикле, на 1 кг этилена. [c.141]

    Наряду с изучением и усовершенствованием состава катализатора и условий проведения реакции димеризации ацетилена было разработано технологическое оформление процесса адиабатическим методом путем регулирования теплового режима сильно экзотермической реакции и поддержания необходимой температуры за счет испарения воды и продуктов реакции при циркуляции через раствор катализатора избытка ацетилена. Постоянство состава и концентрации компонентов раствора катализатора поддерживали добавлением подкисленной воды в количествах, необходимых для компенсации ее уноса. [c.710]

    В поршневых паровых машинах рабочее тело—водяной пар охлаждается не в рабочем цилиндре, а в отдельном конденсаторе, что ухудшает теоретический коэффициент полезного действия, но уменьшает практические потери теплоты. Цикл процессов в паровой машине, без учета неравновесности их, отражается циклом Рэнкина (рис. I. 5). Изобарно-изотермический процесс АВ отвечает испарению воды в котле и наполнению рабочего цилиндра. После отсечки пара (точка В) происходит адиабатическое расширение пара в цилиндре (кривая ВС), а затем выбрасывание охлажденного пара при обратном движении поршня (изобарно-изотермический процесс СО). Коэффициент полезного действия цикла Рэнкина с насыщенным паром равен 0,29—0,36, а с перегретым паром составляет 0,34—0,46. [c.46]

    Если предположить, что процесс испарения топлива во впускной системе двигателя протекает адиабатически, то все необходимое количество тепла Q (ккал) должно отниматься от воздуха, в среде которого происходит испарение, и от самого топлива, т. е. [c.45]

    Процесс сушки осадков на фильтре можно разделить на два периода. Во время первого, отличающегося наибольшей скоростью сушки, из слоя осадка уходит воздух, насыщенный влагой в адиабатических условиях, поскольку поверхность контакта достаточна для массопередачи от жидкой фазы к газообразной. При этом внутри осадка создается относительно узкая зона испарения, которая постепенно перемещается от границы осадка с воздухом к [c.281]

    Кажущаяся несовместимость удаления влаги из осадка путем введения в его поры пара, который при частичной конденсации превращается во влагу, объясняется тем, что при повышении температуры вязкость жидкой фазы осадка значительно понижается это облегчает удаление влаги из осадка и понижает степень насыщения. Указано, что при поступлении пара на фильтр по толщине осадка распространяется фронт конденсации, причем температура в слое осадка, где происходит конденсация, сначала резко повыщается, а затем понижается соответственно действующему вакууму [312]. При этом температура осадков с хорошей проницаемостью повышается в течение нескольких секунд до 360 К для осадков с плохой проницаемостью указанная температура достигается за 1 —1,5 мин. В результате адиабатического охлаждения на воздухе, сопровождающегося испарением из осадка влаги, происходит дополнительное снижение влажности на 1,5—2%. [c.283]

    Установки для экстракции керосина жидкой ЗОд состоят из двух или трех ступеней, причем в новых установках применяют колонны. Схема установки дана на рис. 6-14. Сырец фильтруется и высушивается под уменьшенным давлением (вода образует с растворителем твердые гидраты), а затем охлаждается в промежуточных теплообменниках. Растворитель охлаждается путем адиабатического испарения. Экстракция проводится в двух соединенных последовательно колоннах при температуре от —6 до —12 °С. Отгонка ЗОа из продуктов проводится в выпарных аппаратах под тремя дав- [c.400]

    Условия смешения двух потоков (питания и маточного раствора) в процессе кристаллизации могут быть охарактеризованы критерием смешения, т. е. соотношением энтальпий и расходов этих потоков. При определенных значениях указанных параметров смещение не приводит к образованию новой фазы. Схема DTB-кристаллизатора представлена на рис. 2.11. Работа рассматриваемого вакуум-кристаллизатора сопряжена с адиабатическим смешением двух потоков (питания и рецикла), насыщенных или ненасыщенных по целевому компоненту и различающихся по температуре и концентрации. При этом поток рецикла должен быть настолько большим, чтобы упругость пара потока смеси (зона /) была меньше суммы гидростатического давления столба жидкости от точки ввода потока питания до зеркала испарения и давления паров в сепараторе кристаллизатора. В зоне 2 с помощью мешалки происходит вторичное смешение поднимающегося по циркуляционному контуру потока с суспензией. При этом температура вторичного потока смеси на 0,1—0,2° С выше температуры кипения раствора при данном вакууме в аппарате. Таким образом, съем пересыщения происходит в зоне 3, ограниченной зеркалом испарения и слоем жидкости в несколько сантиметров. [c.208]


    Адиабатическое охлаждение воздуха происходит в том случае, если все тепло, необходимое для испарения влаги с поверхности материала, поступает из окружающего воздуха как единственного источника тепла. При этом процесс испарения (сущки) протекает в адиабатических условиях — без потерь тепла и подвода его извне. [c.741]

    В установках адиабатического испарения степень концентрирования ограничена (3—8), так как повышение последней связано с интенсивным образованием отложений солей на поверхности конденсатора головного подогревателя. Применение существующих способов предотвращения отложения солей должным образом не обеспечивает повышения концентрирования раствора. Степень концентрирования можно повысить путем увеличения скорости движения [c.38]

    Количество воды для увлажнения определяется изменением относительной влажности ф и снижением температуры охлаждающего воздуха на входе в теплообменные секции. Количественная оценка изменения ф на входе и выходе охлаждающего воздуха, степень использования воды в процессе адиабатического снижения температуры воздуха, показатели испарения воды с оребренной поверхности и потерь в дренаж являются предметом специальных исследований системы увлажнения воздуха на входе в АВО. [c.74]

    Цель этого процесса — ограничение повышения температуры уровнем, необходимым для протекания реакции взаимодействия водорода и окиси углерода при их больших концентрациях в адиабатическом реакторе. Выделяемая при реакции теплота в данном (Случае частично расходуется как полезная, необходимая для процесса, а частично на покрытие затрат тепла, необходимого для испарения циркулирующего инертного разбав ите-ля. Использование тепла в этом процессе весьм а высокое, что обеспечивает получение пара высоких параметров, необходимого для других стадий процесса. [c.189]

    Процессы адиабатические. Это тоже не правильно, так как тепло будет проникать из окружающей среды. Однако процесс мгновенного испарения протекает очень быстро, и, следовательно, притоком тепла от окружающей среды скорее всего можно пренебречь. Намного существеннее здесь степень влияния пены и брызг на количество жидкости, выброшенной в окружающую среду. Эти вопросы будут обсуждаться чуть ниже. Как и в случаи с криогенными жидкостями, можно ожидать дифференцированного испарения более низкокипящих компонентов смеси, что является основой "однократной равновесной перегонки".  [c.79]

    Коммершел Солвент , проводящей нитрование пропана азотной кислотой в паровой фазе, отвод тепла осуществляется путем пспа-ренпя части азотной кислоты, поступающей на нитрование. Основным аппаратом установки является реактор, представляющий собой вертикальную трубу, разделенную па несколько секций. В поток подогретого до 430° пропана, вводимого в верхнюю часть реактора, вместе с производственным паром впрыскивается распыленная жидкая азотная кнслота, на испарение которой и затрачивается избыточное тенло реакции. В случае адиабатического ведения процесса концентрация применяемой азотной кислоты составляет 75—78%. [c.128]

    Заключительный резервуар не виден на фотографии, поскольку он располагался за цепью реакторов. Вместимость каждого реактора составляла примерно 20 т, таким образом, общая вместимость реакторной цепи, включая заключительный резервуар, была примерно 140 т. Проведенный нами подсчет процентного содержания чистого циклогексана при теоретически адиабатическом процессе мгновенного испарения дал значение 40% всего количества (см. разд. 13.15.9). Следовательно, происшедшая утечка привела к образованию облака паров циклогексана массой 56 т. Возникли предпосылки катастрофы. [c.331]

    Для расчета объемных коэффициентов тепло-. и массопередачи в процессе адиабатического охлаждения воздуха (путем испарения воды в потоке воздуха), характерного, например, для кондиционирования воздуха, можно использовать упрощенные формулы [c.258]

    Реакцию -димеризации ацетилена ведут в барботажных реакторах адиабатическим методом. Необходимую температуру поддерживают за счет испарения воды и продуктов реакции при циркуляции через раствор катализатора избытка ацетилена. [c.420]

    Предел охлаждения воздуха, взаимодействующего с влажным материалом. Если взаимодействие воздуха с влажным материалом проводить в изобарно-адиабатических условиях, то перенос массы будет происходить при непрерывном увеличении энтальпии. Тепло, необходимое для испарения жидкости, берется из окружа- [c.416]

    Однократная перегонка осуществляется испарением или дросселированием жидкой смеси. На рис. 1-21 показаны варианты схемы процесса однократной перегонки. При однократном испарении (рис. 1-21, а) исходную жидкую смесь непрерывно подают в подогреватель 1, где она нагревается до заданной температуры, соответствующей определенной доле отгона смеси при фиксированных значениях давления и температуры, затем парожидкостная смесь поступает в адиабатический селаратор 2, где паровая фаза отделяется от жидкой. Пары конденсируются и охлаждаются в конденсаторе 5 и в виде дистиллята поступают в емкость 4. Дистиллят из емкости и остаток из сепаратора после охлаждения непрерывно отводятся с установки. [c.54]

    Для полноразмерных ГТД с испарительным охлаждением компримируемого воздуха подачей охлаждающей жидкости во входное устройство ГТД заметно снижается температура воздуха 4 после компрессора (особенно при подаче воды, имеющей большие значения теплоты испарения). В этом случае (в зависимости от впр) Лгс< <Нс, поэтому эти режимы работы компрессора оценивались не адиабатическим, а изотермическим индикаторным к. п. д. [c.251]

    В Советском Союзе в результате исследований, проведенных во ВНИИСК и ЦНИЛ Ереванского завода, был разработан оригинальный и простой способ гидрохлорирования ВА непрерывным методом в адиабатических условиях. Постоянство температуры реакции обеспечивается за счет теплоты испарения ВА, подаваемого частично в жидкой фазе, и путем проведения реакции при небольшой глубине конверсии, с отводом продуктов реакции в паровой фазе. [c.718]

    При ттерегонке с однокуатным испарением неФть нагревают в змеевике какого-либо подогревателя до заранее заданной температуры. По мере повышения температуры образуется все больше паров, которые находятся в равновесии с жидкой фазой, и при заданной температуре паро-жидкостная смесь покидает подогреватель и поступает в адиабатический испариягель. Последний представляет собой пустотелый цилиндр, в котором паровая фаза отделяется от жидкой и выводится сверху. Пары проходят конденсатор-холодильник, где конденсируются, а образовавшийся конденсат охлаждается истекает в приемник. Жидкая фаза выводится снизу испарителя, охлаждается в холодильнике и направляется в соответствующий приемник. [c.199]

    Технологическая схема газофазного нитрования пропана азотной кислоты изображена на рпс. 100. Процесс осуществляется в цилиндрическом аппарате 2 адиабатического тппа, не имеющем теплообменных устройств. Теплота реакции расходуется на нагревание исходного углеводорода и испарение азотной кислоты, которую впрыскивают в реакционное пространство через форсунки, расположенные в разных точках по высоте аппарата. Этим достигается большой избыток углеводорода по отношению к кислоте во всем объеме реактора, предотвращается возможность образования пзрывоопасных смесей, перегревов и слишком глубокого окисления. [c.348]

    Ввиду высокой экзотермичности окисления адиабатические реакторы le нашли применения в этом процессе. Гораздо больше рас-прострален трубчатый реактор со стационарным слоем катализатора, ниходящимся в трубах и охлаждаемым через межтрубное пространство хладоагентом (рис. 124,а). Трубы имеют диаметр 10—25 1М, что способствует отводу тепла и установлению более равном рной температуры по диаметру. Чтобы лучше использовать кагализаторный объем, в аппарат подают реагенты предварительно подогретыми. Наилучший способ отвода выделяющегося тепла — испарение в межтрубном пространстве водного конденсата, генерирующего водяной пар того или иного давления в зависи- [c.417]

    Следует отметить, что снижение или компенсация теплопотерь оказывает заметное влияние на эффективность колонны, поскольку когда колонна теряет тепло, сверху вниз к потоку фпегмы орошения добавляется дополнительная флегма за счет конденсации части паров у стенок. Если же при компенсационном методе через боковую поверхность колонны к ней подводится дополнительное тепло ( отрицательные теплопотери), то, наоборот, в направлении сверху вниз поток фпегмы будет убывать за счет испарения его у стенок. Если дпя идеального случая ректификации в адиабатических условиях рабочей пинией является прямая а6 (см. рис. 6.1), то дпя двух вышерассмотренных случаев эта рабочая пиния будет кривой, соответственно аЬ" к ад. Так, если колонна работает с теппопотерями (кривая аб ), в составе кубовой жидкости пегкокипящего компонента будет меньше, чем при подводе тепла через стенки колонны ( х"< х ). Таким образом при выборе оптимальных условий работы лабораторной колонны необходимо избегать подвода тепла и при компенсационном нагреве лучше допустить небольшие теплопотери, поддерживая температуру обогрева на 1-5 °С ниже температуры стенки колонны. [c.145]

    При переходе от начальных условий к конечным, щюисходит частичное испарение. Если считать, что процесс протекает адиабатически (т.е. система не получает и не отдает тепло), то это будет означать, что энтальпия единицы массы жидкости при начальных условиях равна сумме энтальпии части жидкости, которая осталась неиспаренной, и энтальпии исходной единицы массы той части жидкости, которая испарилась. [c.77]

    Доля вещества, участвующего в процессе адиабатического мгновенного испарения, согласно [Сгетег,1974а], определяется следующим выражением  [c.346]

    Аммиак NH3 имеет молекулярную массу, равную 17, плотность его в 0,6 раза меньше плотности воздуха при одинаковой температуре. Это, однако, не означает, что в случае потери герметичности резервуара, содержащего сжиженный аммиак, формирующееся облако будет обязательно легче воздуха. В таких условиях в некоторых случаях отмечалось образование облаков воздушно-аммичной смеси тяжелее окружающего воздуха. Можно показать, что при смешении паров аммиака, находящегося при температуре -33 °С (т. кип. аммиака при атмосферном давлении), с окружающим воздухом, имеющим температуру, скажем, 20 °С, при любом соотношении смешиваемых компонентов образующаяся смесь всегда будет легче воздуха. Для объяснения более высоких значений плотности образующейся смеси следует допустить возможность адиабатического насыщения воздуха путем либо испарения капель жидкого аммиака, захваченных в воздухе, либо охлаждения разлития жидкого аммиака ветром ниже -33 °С. В работах [Ball,1970 Shaw,1978] утверждается, что последний механизм неправомерен и такая ситуация невозможна, так как за счет теплопроводности окружающего воздуха температура разлития жидкого аммиака всегда будет близка к температуре кипения аммиака при атмосферном давлении. Однако полностью отбрасывать возможность такой ситуации на стадии мгновенного испарения не стоит. В частности, Беверидж [Beveridge,1981] в своей работе так и не приходит к определенному заключению по этому вопросу. [c.383]

    Адиабатические эксперименты с применением обычной аппаратуры пригодны только для реакционных смесей, разложение которых начинается ниже точки кипения смеси, так как имеет место охлаждение за счет испарения. Цель проведения адиабатических опытов под давлением заключается в исследовании термической стойкости легколётучих реакционных смесей. [c.178]

    Однократное испарение нефти, проводимое для установ-летгя 15ЫХОЛОВ дистиллятов и остатков при испарении иефти в адиабатических условиях при разных температурах [6].  [c.18]

    Линии температур мокрого термометра. Изобарно-адиабатический процесс в замкнутой системе жидкость — влажный газ характеризуется следующим а) непрерывное испарение жидкости увеличивает влагосодержание газа б) тепло, необходимое для испарения жидкости, берется из влажного газа в) температура жидкости достигает некоторой величины, которая остается иримерно постоянной на протяжении всего процесса насыщения газа. [c.414]

    Процесс испарения в изобарно-адиабатическом процессе происходит с увеличением энтальпии влажного воздуха по лииии f = onst. Эту линию на диаграмме влажного воздуха можно построить следующим образом. При адиабатическом насыщении (ф = 1) isjia- [c.414]

    Такая сушилка называется теоретической. Процесс сушки в ней протекает адиабатически при постоянной энтальпии воздуха / = onst испаряемая из материала влага вносит в сушильный агент ровно столько тепла, сколько он отдает, охлаждаясь, на испарение влаги. В соответствии с выражением (21-7) в теоретической сушилке при уменьшении с .д. на такую же величину возрастает xia, поэтому сумма обоих слагаемых остается постоянной (/ = onst). [c.748]


Смотреть страницы где упоминается термин Испарение адиабатическое: [c.250]    [c.195]    [c.98]    [c.164]    [c.395]    [c.75]    [c.84]    [c.345]   
Процессы и аппараты химической технологии Часть 1 (2002) -- [ c.309 ]

Фазовые равновесия в химической технологии (1989) -- [ c.324 ]

Основные процессы и аппараты химической технологии Издание 5 (1950) -- [ c.603 ]

Процессы и аппараты химической технологии Часть 1 (1995) -- [ c.309 ]

Основы теории горения (1959) -- [ c.98 ]




ПОИСК







© 2025 chem21.info Реклама на сайте