Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термическая стойкость ароматических углеводородов

    Определение 04 моторным методом — наиболее сложный способ испытания бензиновых смесей Основная причина — нелинейная связь между свойствами анализируемых объектов и получаемыми результатами, что вызывает значительные расхождения Оценка применимости спектроскопии ЯМР для поиска взаимосвязей вида фрагментный состав — свойство проведена нами для бензинов и легких фракций нефти В табл 3 5 приведен фрагментный состав ряда товарных бензинов прямогонных (42—48), термокрекинга (49, 50), смеси прямогонных и термокрекинга (51—55), смеси каталитического крекинга и риформинга (55—60) Октановое число исследуемых бензинов было известно и варьировалось в пределах -20 ед (63—80) В табл 3 6 приведены диапазоны изменения ФС исследованных бензинов Прямогонные бензины имеют низкие значения параметра ароматичности и довольно высокое содержание углеродных атомов Сд, характеризующих содержание н-алканов В состав бензинов термического крекинга входит заметное количество алкенов, детонационная стойкость которых выще детонационной стойкости мзо-алканов и н-алканов Бензины каталитического крекинга и риформинга имеют наиболее высокие детонационную стойкость и значения 04, что связано с увеличением содержания в них ароматических углеводородов и мзо-алканов (см табл 3 6 — / и С ) [c.250]


    При получении бензинов на нефтеперерабатывающих предприятиях не всегда удается обеспечить требуемый уровень эксплуатационных свойств чисто технологическими приемами. В ряде случаев, в основном при использовании процессов для увеличения выхода бензинов из перерабатываемого сырья, происходит значительное ухудшение отдельных показателей качества. Например, в результате каталитического и термического крекинга тяжелого сырья получаемые бензины значительно уступают бензинам прямой перегонки и каталитического риформинга по химической стабильности. При повыщении детонационной стойкости с помощью процесса каталитического риформинга значительно увеличивается содержание ароматических углеводородов, отрицательно влияющих на экологические свойства и увеличивающих склонность бензинов к нагаро-отложениям в двигателе. Ввиду незначительной вязкости и малого содержания природных поверхностно-активных гетероорганических соединений (сернистых, азотистых, кислородных) бензины, получаемые основными крупнотоннажными технологическими процессами прямой перегонкой нефти, каталитическим крекингом и каталитическим риформингом, имеют низкие защитные и противоизносные свойства, не обладают хорошей моющей способностью. [c.350]

    Для фракции 3-часового крекинга гексадекана наблюдается значительное повышение удельных весов и снижение анилиновых точек по сравнению с аналогичными фракциями 1-часового крекинга того же углеводорода. Расчет показывает, что и здесь весьма вероятным является образование некоторого количества ароматических или циклических непредельных углеводородов. Содержание непредельных углеводородов в аналогичных фракциях двух опытов крекинга гексадекана изменяется мало. Это объясняется тем, что во втором случае исходного гексадекана было взято около 88 г, что уменьшило концентрацию олефинов и повысило их относительную термическую стойкость. [c.75]

    В бензинах термического крекинга велико содержание непредельных углеводородов, детонационная стойкость которых выше, чем нормальных парафиновых, поэтому октановое число бензинов термического крекинга обычно больше, чем бензинов прямой перегонки из тех же нефтей. Бензины каталитического крекинга имеют более высокую детонационную стойкость, чем бензины термического крекинга, главным образом благодаря увеличенному содержанию в них ароматических и парафиновых углеводородов изостроения. Процесс каталитического риформинга предназначен для повышения детонационной стойкости бензинов прямой перегонки. Бензины риформинга имеют высокое октановое число главным образом из-за большого содержания ароматических углево -дородов (до 70%). В качестве компонента товарных бензинов используют как бензины риформинга целиком, так и их отдельные фракции, остающиеся после извлечения из платформата индивидуальных ароматических углеводородов. Так, бензин каталитического крекинга легкого сырья из куйбышевских нефтей имеет [c.325]


    Природа исходного сырья. повышением молекулярного веса термическая стойкость всех углеводородов падает и наибольшей устойчивостью обладают такие низкомолекулярные соединения, как метан, этан, бензол, толуол и др. Установлено, что чем ниже температура кипения исходного нефтепродукта, тем больший выход ароматических углеводородов наблюдается при пиролизе,. [c.126]

    Результаты пиролиза зависят от типа соединения, молекулярного веса и условий процесса. С увеличением молекулярного веса термическая стойкость веществ падает. Наиболее устойчивы к действию высоких температур низкомолекулярные углеводороды — метан, этан, ацетилен и ароматические углеводороды — бензол, толуол. [c.222]

    Легче всего окисляются парафины, а труднее всего—ароматические углеводороды с конденсированными кольцами. Как будет видно ниже (стр. 306), в этом же порядке углеводороды располагаются по термической стабильности. В гомологических рядах углеводородов жирного ряда стойкость к окислению снижается с увеличением длины цепи и возрастает со степенью разветвленности. Таким образом, в ряду н-С5Н 2, и н-СдН, наиболее легко [c.187]

    Наличие нафтеновых углеводородов в реактивных и дизельных топливах положительно сказывается на их эксплуатационных свойствах. Нафтеновые углеводороды обладают большей термической стойкостью, чем парафиновые они менее склонны к нагарообразованию в двигателях, чем ароматические углеводороды. [c.5]

    По увеличению термической стабильности углеводороды мож- но расположить в следующий ряд [11] н-парафины<разветвлен-ные парафины < циклопарафины < ароматические < полициклические ароматические. Наиболее стабильными являются низкомолекулярные углеводороды — ацетилен и метан. С ростом молекулярной массы термическая стойкость углеводородов падает. Парафины с двумя или несколькими атомами углерода в молекуле начинают заметно разлагаться при температуре 400—600 °С. [c.156]

    Каталитический риформинг предназначен для повышения детонационной стойкости бензинов и получения ароматических углеводородов бензола, толуола, ксилола. Сырьем процесса каталитического риформинга являются фракции прямой перегонки природной и синтетической нефти и бензиновые фракции термического крекинга и коксования углеводородного сырья. Высокоактановые компоненты бензина получают из фракций, выкипающих в пределах 85—180°С и ароматические углеводороды из фракций, отбираемых в пределах от 65—70 до 140—150°С. Процесс осуществляют при температурах от 450—470 до 500—550°С и давлении 1,5—2,5 МПа в зависимости от сырья. [c.264]

    Бензины термического крекинга обладают более высокой детонационной стойкостью, чем некоторые бензины прямой гонки, благодаря присутствию в них ароматических углеводородов и углеводородов разветвленного строения. Октановое число таких бензинов — около 70. Присутствие в крекинг-бензинах реакционноспособных непредельных углеводородов делает их менее стабильными, чем бензины прямой гонки. [c.470]

    Расчеты констант равновесия, произведенные Сахановым и Тиличеевым для реакций различных углеводородов, имеющих место при 477°, показали, что нафтены стремятся дегидрироваться в производные бензола, а боковые цепи могут отщепляться с образованием олефинов. С точки зрения стойкости к термическому воздействию, нафтены занимают среднее положение между парафиновыми и ароматическими углеводородами. [c.103]

    Подтверждается общеизвестный факт, что выше определенной температуры ароматические углеводо]эоды обладают значительно большей термической стойкостью, чем углеводороды других классов. Эта предельная температура находится около 250°. Выше 250° возможно нротекапие дегидрирования нафтеновых углеводородов или циклизации парафиновых или олефииовых углеводородов. При темнературе выше 400° равновесие смещается в сторону образоваппя ароматических углеводородов настолько, что даже значительное парциальное давление водорода не может в заметной степени подавить реакции дегидрирования. [c.277]

    Из илеикообразователеи иа осиове каучуков большой интерес представляют ироизводкые каучуков (натурального и синтетического), называемых циклокаучуками. Отличаются они небольшим молекулярным весом, что позволяет получать из них низковязкие растворы концентрации выше 50%. Эти лаки обладают высокой адгезией к металлической поверхности, бетону и другим материалам. Они также обладают большой износостойкостью, термической стойкостью и достаточно стойки в кислотах, щелочах, ароматических, углеводородах и нефтяных продуктах. [c.447]

    Интересные результаты получены при изучении термической стойкости гибридных структур углеводородов С32, содержащих в молекуле наряду с длинной парафиновой цепью такие циклические структуры, как бензольное и циклогексановое кольца или конденсированные бициклические системы нафталин, татралин и декалин (табл. 99). Значение термической стойкости углеводородов представляет большой практический интерес как для переработчиков нефти, так и для потребителей нефтепродуктов. Хорошо известно, что представители разных групп углеводородов (парафины, циклопарафины и ароматические) легких и средних фракций нефти сильно различаются по термической стойкости. Тем больший интерес представляло выяснить термическую стойкость сравнительно высокомолекулярных (С32), сильно гибридизированных структур углеводородов и установить, имеется ли определенная зависимость термостойкости от строения. Для исследования были взяты ранее синтезированные нами углеводороды, свойства которых приведены выше в табл. 25. [c.176]


    Следует отметить, что для дистиллятных пидои сырья пределы выкипания фракции, возвращающейся иа крекинг, чаще гхего совпадают с и1)едел ми выкипаиия сырья, о/ иако по качеству она будет несколько отличаться, так как в продуктах крекиига уьелр чивается концентрация ароматических углеводородов, появляются непредельные, сокращается содержание парафинов и т. д. Это изменение химического состава способствует повышению термической стойкости рециркулирующей фракции ио сравнению с исходным сырьем. [c.47]

    Высокие термическая стабильность и температура кипения полициклических ароматических углеводородов определяют их малую летучесть и повышенную термостойкость, стойкость к действию радиации полимерных материалов и пластификаторов, являющихся их производными. Повышенная по сравнению с моноцик-лическими ароматическими углеводородами реакционная способность облегчает получение полимерных материалов при взаимодействии полициклических ароматических углеводородов с формальдегидом [106]. При окислении полициклических ароматических углеводородов получаются разнообразные хиноны, ди- и полн- [c.100]

    Результаты исследования селективности и емкости смесей К-ме-тилпирролидона с другими растворителями показаны на рис. 2.20. Из испытанных семи смесей К-метилпирролидона с другими растворителями наилучшие результаты получены с формамидом, несколько худшие показатели наблюдаются при применении этиленгликоля, глицерина и этаноламина. Вследствие низкой термической стойкости формалщда (распад формамида с образованием двуокиси углерода и аммиака при 150 °С 0,1 %/ч) использование его в качестве растворителя нежелательно. По температуре кипения этаноламин (170 °С) и глицерин (290 °С) значительно отличаются от К-метилпирроли-дона (204 °С), поэтому при выделении ароматических углеводородов [c.62]

    Разница между термической устойчивостью первых четырех углеводородов довольно значительна и трудно поддается объяснению Наиболее устойчивым в термическом отношении из всех исследованных ароматических углеводородов является нафталин. Термическая стойкость его является исключительной. Прн 500° С он остается почти без пзменепия. Для превращения нафталина на 10% при 500° С требуется выдержать его при этой темиературе в течение б часов. [c.186]

    Реакция алкилирования имеет определенное значение и для решения проблемы создания новых компонентов топлив и высококачественных синтетических смазочных масел (нафтеновых углеводородов с длинными боковыми цепочками), обладающих низкими температурами замерзания, высокой термической стойкостью, теплотворностью и другими ценными, свойствами для сверхскоростной авиации (трехстуненчатый синтез полимеризация олефинов, алкилирование бензола нолимеролефинами и гидрирование бензольного ядра в условиях, сохраняющих боковые цепочки нетронутыми). Актуальным является также алкилирование галоидозамещенных ароматических углеводородов олефинами. [c.66]

    При добавлении одинакового количества ТЭС к бензинам различного происхождения их антидетонационные свойства улучшаются неодинаково. Это свойство бензинов в различной мере повышать детонационную стойкость при добавлении антидетонаторов называют приемистостью. Приемистость бензинов к ТЭС зависит от углеводородного состава к содержания неуглеводородных примесей, в первую очередь сероорганических соединений. Наибольшей приемистостью к ТЭС обладают парафиновые углеводороды, наименьшей— олефиновые и ароматические, нафтеновые углеводороды занимают промежуточное положение. Бензины прямой перегонки обычно обладают большей приемистостью к ТЭС, чем бензины термического крекинга и.ч той же нефти. При увеличении содержания ароматических углеводородов в бензинах каталитического крекинга и риформинга их приемистость к ТЭС ухудшается. Сер Оорганичеокие соединения способны связывать активные соединения, образующиеся при разложении ТЭС, поэтому с увеличением содержания серы в бензине его приемистость с ТЭС уменьшается. [c.288]

    Бензины термического крекинга по углеводородному составу отличаются от прямогонных. Если в прямогонных бензинах в основном содержатся парафиновые и нафтеновые углеводороды, то в крекинг-бензине много непредельных и ароматических углеводородов. Октановое число крекинг-бензинов составляет 66—68 пунктов по моторному методу в чистом виде. По своей антидетонацион-ной стойкости крекинг-бензин не соответствует требованиям, предъявляемым современными автомобильными двигателями. [c.184]

    Интересно отметить, что фракция нефти, из которой выделялись ароматические углеводороды, содержала 0,3% серы. Хотя о содержании серы в исследованной ароматической части не сообщается, но, несоменпо, большая часть ее, если пе вся, сконцентрировалась в этой последней фракции. Специальные исследования термической стойкости сераорганических соединений, содержащихся в сырой нефти, показали [39], что бблыная часть их разлагается уже при температурах 150—350° и лишь немногие (тиофеп, 2,5-диметилтиофен, тионафтен, тиантрен) выдерживают без разложения температуру 450—500°. Таким образом, как углеводороды, так и сернистые соединения сырой нефти являются источником образования высококондепсированных ароматических соединений в процессе перегонки ( (> ( целью выделения высококипящих дистиллятных фракций. [c.151]

    Бензины, полученные каталитическим крекингом, имеют более высокую детонационную стойкость, чем бензины термического крекинга. Это обусловлено главным образом увеличением содержания в бензиновых фракциях изоалканов и ароматических углеводородов. Антидетонационные свойства бензинов каталитического крекинга зависят от фракционного состава сырья, режима крекинга, состава катализатора и могут колебаться в широких пределах. Бензины каталитического крекинга часто используют как базовые для приготовления товарных высокооктановых бензинов. [c.110]

    Температуру разлбжения (пиролиза) ароматических углеводородов определяли в стеклянных запаянных ампулах, предварительно эвакуированных до глубокого вакуума. Разложение углеводородов оценивали по изменению состава газовой фазы и по образованию уплотненного осадка, выпадающего из раствора [15]. Установлено, что с увеличением длины и числа алкильных цепей термическая стойкость гомологов бензола резко падает, а реакционная способность возрастает, что обусловлено введением в молекулу связей, обладающих меньщей энергией, чем связь С—Н бензольного кольца. [c.233]

    Все углеводороды, не образующие в данных условиях кокса, токидают ргакционную зону еизмененными. Из данных табл. 5 следует ряд интересных выводов. Замена атомов водорода в ароматическом кольце алкильными группами снижает термическую стойкость углеводорода и повышает реакционную способность его относительно коксообразования. 1,2-Бензантрацен испаряется в условиях эксперимента без разложения, а 9,10--диметил-1,2-бензантрацен образует кокс. При этом нужно иметь в виду, что введение метильных групп в наиболее реакционноспособные положения 9 и 10 сильно снижает способность молекулы к присоединению радикала. По данным [7], для 9-метилантрацена относитель- [c.14]

    Данные табл. 8 показывают, что склонность ароматических углеводородов к конденсации связана с их строением совершенно так же, как способность этих углеводородов образовывать кокс. В случае незамещенных ароматических углеводородов легче всего образуют продукты конденсации линейно конденсированные много-ядерные углеводороды—ацены. еры-Конденсированные и ангулярно конденсированные (фены) углеводороды весьма термически устойчивы, а углеводороды со смешанным типом конденсации бензольных колец обладают промежуточной между аценами и фенами склонностью к образованию продуктов конденсации. Алкилирование ароматических колец сильно снижает термическую устойчивость углеводорода. Нужно отметить, что замещение ароматического водорода радикалами крупнее метильного снижает термическую устойчивость в значительно большей степени, так как связь АгС — С приблизительно на 1 2 ккал1моль слабее связи АгС — Н. Гетероциклические аналоги могут иметь и большие, и меньшие термическую стойкость и склонность к образованию продуктов конденсации, чем соответствующие ароматические углеводороды. Повышение или понижение устойчивости ароматических углеводородов к реакции конденсации при замене углеводородного атома в молекуле на гете- [c.24]

    В прямогонных газойлях могут содержаться сравнительно большие количества полициклических ароматических углеводородов. Поскольку эти соединения образуются и во время крекинга, они являются основными компонентами крекинг-газойлей. Полициклические ароматические углеводороды отличаются не только высокой термической стойкостью, они подавляют крекинг парафиновых, олефиновых и нафтеновых углеводородов [38], так как высокомолекулярные ароматические углеводороды избирательно адсорбируются на катализаторе, занимая таким образом активные центры, на которых в противном случае могли бы протекать целевые реакции крекинга. Эти соединения в последующем не десорби- [c.201]

    Взеделие амидной группы часто улучшает свойства мыл и загустителей мыльного типа. Естественно стремление вообще исключить из структуры солевую группу, способствующую окислению и ухудшающую свойства. Простейшие соединения такого типа, например амид стеариновой кислоты, все же не дают вполне удовлетворительных результатов — его температура плавления слишком иизка. Но соединения, содержащие две или больше амидных групп, можно рассматривать как своего рода диамид компактного строения. Они плавятся при столь же высоких температурах, как и мыла. Присутствие олеофильных групп, например алкильных С 2 — С22, обеспечивает высокую загущающую способность нефтяных масел, но в полисилоксановых жидкостях целесообразнее использовать ароматические углеводороды, отличающиеся более высокими температурой плавления и термической стабильностью. Преимущества загустителей, не содержащих металлов и обеспечивающих повышенную стойкость к окислению, отчетливо обнаруживаются при испытаниях в бомбе (рис. 4) [45]. [c.141]

    Сернистые соединения расщепляются по месту присоединения серы и по углеродному скелету. В последнем случае сера остается в составе образующихся новых углеводородов. Чем больше молекулярный вес углеводородов, тем больше вероятность протекания последней реакции. Это способствует накоплению сернистых соединений в высокомолекулярных продуктах каталитического крекинга. При каталитических превращениях индивидуальных углеводородов стойкость соединений с одинаковым числом углеродных атомов в молекуле в процессе крекинга возрастает в следующем порядке алкены < ароматические углеводороды с замещающими группами С4 и выше < нафтены < по-лиметилароматические углеводороды < алканы < незамещенные ароматические углеводороды. Эта последовательность существенно отличается от последовательности, наблюдаемой при термическом крекинге. [c.15]


Смотреть страницы где упоминается термин Термическая стойкость ароматических углеводородов: [c.193]    [c.111]    [c.262]    [c.116]    [c.131]    [c.133]    [c.181]    [c.115]    [c.176]    [c.113]    [c.253]    [c.308]    [c.191]    [c.300]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.103 , c.104 , c.110 ]




ПОИСК







© 2025 chem21.info Реклама на сайте