Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольфрам получение и свойства

    ВОЛЬФРАМ Получение и свойства вольфрама [c.214]

    Вольфрам. Получение вольфрамового ангидрида прокаливанием вольфрамовой кислоты и вольфрамовокислого аммония, изучение его свойств. Получение вольфрамовой кислоты из вольфрамовокислого аммония и исследование ее отношения к растворам кислот и щелочей. Получение пара-вольфрамата натрия. Получение вольфрамовой сини и сульфосолей вольфрамовой кислоты. [c.69]


    Поликристаллы изготовляют не только прямым синтезом, но и спеканием под давлением мелких кристаллов алмаза в области его термодинамической устойчивости. Процесс спекания проводят в тех же установках, где и синтез, но в качестве реакционной щихты берут алмазный порошок. При соответствующих температуре и давлении реакционную массу выдерживают определенное время, чтобы отдельные кристаллы спеклись в единый агрегат. Кроме того, в последние годы начали развиваться методы получения композиционных материалов к алмазу в процессе синтеза (или спекания) добавляются различные вещества (титан, вольфрам, бор и т. д.), придающие алмазным композитам свойства, нужные для различных технологических целей. [c.144]

    Рений (порядковый номер 75) принадлежит к УП группе периодической системы Д. И. Менделеева. Ближайшими к рению по группе элементами являются технеций, который в природе не найден, и элемент 107, который еще не открыт. Ближайшими соседями по периоду являются вольфрам и элементы триады осмия, а по диагональным сечениям таблицы — молибден, уран, элементы триады рутения. Сопоставление свойств рения с его аналогами обеспечивает более полное получение информации о свойствах рения и его соединений [558]. [c.7]

    В настоящее время редкие металлы получили применение в самых разнообразных областях науки и техники, причем области применения их из года в год расширяются. Это прежде всего объясняется особыми физическими и химическими свойствами редких металлов, так, например, германий является ценнейшим материалом дЛ1 изготовления полупроводниковых приборов, широко применяемых в различных областях радиотехники и электронике. Для этих же целей применяются индий, теллур, селен и другие. Введение редких металлов в стали и в сплавы цветных металлов обеспечило получение материалов, стойких против коррозии, жаропрочных, обладающих большой механической прочностью и другими ценными свойствами. В химической технологии и металлургии принято разделять редкие металлы на следующие технические подгруппы а) легкие литий, рубидий, цезий, бериллий и др б) тугоплавкие титан, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам, рений в) рассеянные галлий, индий, таллий, германий г) редкоземельные скандий, иттрий, лантан и лантаноиды радиоактивные полоний, радий, актиний и актиноиды. [c.419]

    Этот выпуск Библиотеки — третий по счету — посвящен химическим алементам с атомными номерами от 51 до S3. Среди них такой жизненно важный элемент, гак йод, драгоценные металлы — золото и платина, известная с глубокой древности ртуть и полученный искусственно уже в послевоенные годы прометий. Значительное место уделено лантану и лантаноидам, имеющим очень близкие химические свойства. Эти элементы прежде почти не использовались, ныне же большинство из них получают в достаточных количествах и применяют во многих областях народного хозяйства в виде принципиально новых материалов разнообразного назначения. Статья о ксеноне рассказывает не только об атом редком благородном газе, но и почти обо всех его соединениях. Именно ксенон первым из благородных газов вступил в химические реакции, и традиционное название э.чементов этой группы инертные газы отошло в прошлое. Не менее интересны статьи о таких практически важных элементах, как свинец, тантал, вольфрам. [c.4]


    Получение кремнийорганических соединений с различными металлами в цепи, обрамленной органическими радикалами и элементоорганическими группами, создает большие перспективы. Перед химией открываются возможности, применяя этот принцип построения полимеров, создавать органические минералы — вещества, в какой-то степени совмещающие свойства природных минералов и органических соединений. Так, в ситаллах, благодаря управляемой объемной кристаллизации стекла — неорганического полимера, образуется такая структура, которая обусловливает исключительную прочность и жаростойкость. Удивительными свойствами, например, обладает сополимер карбидов гафния и титана, плавящийся лишь при температуре 4215° С. При этой температуре даже самый тугоплавкий металл вольфрам течет, как вода. [c.119]

    Обычные методы химического исследования для изучения состава сплавов оказались малопригодными. В разработке новых методов изучения сплавов выдающаяся роль принадлежит советскому ученому акад. Н. С. Курнакову, разработавшему физико-химический анализ. Благодаря новым методам исследования в современной науке и технике создана возможность получения самых разнообразных сплавов с заранее заданными свойствами кислотоупорных, жароустойчивых, сверхтвердых и др. Например, сплав победит, содержащий вольфрам с примесью кобальта, является одним из самых твердых сплавов, известных до настоящего времени. По твердости он приближается к алмазу. [c.397]

    Электроннолучевой нагрев. В последние годы резко возросла потребность в металлах и сплавах, ранее почти не применявшихся или применявшихся в незначительных количествах. К таким металлам относятся уран, цирконий, ниобий, тантал, вольфрам и др., которые используются в условиях исключительно высоких статических и динамических нагрузок при очень высоких температурах. В свою очередь свойства указанных металлов находятся в прямой зависимости от содержания в пих примесей, особенно кислорода, водорода и азота. Обеспечить получение ультрачистых металлов можно, лишь производя операции выплавки и горячей деформации в условиях глубокого вакуума. Наиболее эффективно указанные операции можно производить с помощью электроннолучевого нагрева, принцип которого состоит в следующем. [c.32]

    В качестве легирующих элементов применяют хром, никель, молибден, вольфрам, ванадий, цирконий, титан, ниобий, кобальт,, в некоторых случаях медь. При выплавке сталей, удовлетворяющих особым требованиям, легирование производится элементами, часть которых обеспечивает получение заданных свойств сталей, а остальные играют роль стабилизаторов. [c.12]

    Другие элементы, например, азот, углерод, тантал, медь, ниобий, золото, титан, молибден, мышьяк, цинк, вольфрам, алюминий, ванадий, марганец, хром, кремний и бор, расположенные слева от указанной границы, могут образовывать диффузионные покрытия, причем диффузионные слои кремния, бора и других элементов, полученные на железе и стали, повышают механические свойства их поверхности. [c.115]

    Все перечисленные выще вещества относятся к классу катализаторов Циглера, хотя некоторые из них значительно отличаются от первоначально употреблявшихся Циглером катализаторов. Имеются два других обширных класса катализаторов, обладающих стереоспецифическими свойствами, которые были первоначально открыть вследствие их способности катализировать реакцию получения линейного полиэтилена. Они обычно обозначаются названиями компаний, имеющих оригинальный патент. Катализаторы Филлипса состоят из окиси хрома с алюмосиликатом в качестве носителя. Многочисленные промоторы модифицируют действие этих катализаторов. Типичными являются никель, торий, железо, марганец, уран, ванадий, молибден, вольфрам и цирконий. [c.88]

    Природа металла. Некоторые металлы вообще не подвержены коррозии (платина, золото и др.), многие другие легко пассивируются (хром, никель, вольфрам, молибден, титан и др.). Эти металлы, добавленные в сплавы сталей передают последним свойство пассивации. На этом принципе основано получение. тегированных сталей. [c.160]

    В 1783 г. братья Д елюар (Испания) выделили вольфрамовую кислоту H2W04 из минерала вольфрамита (Ре, Mn)W04. Они же восстановили кислоту углем и назвали полученный металл вольфрамом. В дальнейшем выяснилось, что полученный таким путем вольфрам содержал карбиды. Чистый металл был получен в 1909—1910 гг. Кулид-жем в виде порошка методом восстановления окисла водородом. Ку-лндж также разработал металлокерамическую технологию плотного вольфрама и проволоки. Ока до настоящего времени является общепринятой. В течение XIX в. были выделены Берцелиусом, Велером и другими многочисленные соединения вольфрама и изучены их свойства. Наибольшее развитие химия вольфрама получила в XX в. в связи с расширением областей его применения. [c.222]

    Вольфрам образует соединения, близкие по химическим свойствам к соединениям молибдена. Так же как окись молибдена, 0з малоактивный катализатор для неполного окисления углеводородов. На рис. 91 (кривая 2) показано изменение работы выхода электрона смешанных вольфрам-висмутовых катализаторов различного состава. Смеси, содержащие 35—40% атомн. В1, увеличивают ф аналогично молибден-висмутовым контактам. На рис. 92 показана зависимость удельных констант скоростей образования акролеина, СО и СО., от состава катализатора. Селективность окисления пропилена в акролеин максимальна для катализаторов, содержащих 33—43% атомн. В1, но значительно ниже значений, полученных для молнбден-висму-товых контактов. [c.227]


    Наряду со спеканием компактный вольфрам высокой плотности получают также методами осаждения из газовой фазы, электрохимическим и плазменным осаждением, дуговой, в том числе гарннссажной, и электронно-лучевой плавками, выращиванием монокристаллов в специальных кристаллизационных аппаратах с использованием электронного и плазменного нагревов (электронно-лучевая зонная плавка, плазменно-дуговая плавка). Плавка вольфрама в дуговых и электронио-лучевых печах обеспечивает эффективную очистку от примесей и получение крупных заготовок массой до 3000 кг, предназначенных для изготовления листов, профилей, труб и других изделий методами фасонного литья, прессования, прокатки. Для измельчения зерна с целью повышения технологической пластичности применяют модификаторы и раскислителя (например, карбиды циркония, ниобия и т. д.), а также гарниссажную плавку с разливкой металла в изложницу. Для снижения содержания примесей и одновременно создания более мелкозернистой структуры используют дуплекс-процесс электронно-лучевая плавка+электродуговая плавка Наиболее глубокая очистка от примесей реализуется при выращивании монокристаллов вольфрама. При этом у вольфрама появляются особые свойства, присущие только монокристаллическому состоянию, в частности анизотропия свойств, более высокая по сравнению с поликристаллами эрозионная стойкость, высокая устойчивость к расплавам и парам щелочных металлов, к термоциклированию, облучению, лучшая совместимость со многими неорганическими, в том числе металлическими, материалами и т. д. [c.398]

    Следовательно, теперь это производное глюкозы должно было бы проявить все свойства, присущие альдегидам, если только глюкоза является действительно альдегидоспиртом предполагаемого нами строения. Вольфрому удалось показать, что соединение, полученное им, действительно присоединяет бисульфит натрия и дает другие реакции, которые протекают в опытах с глюкозой отрицательно. [c.189]

    Устойчивость ядер атомов трансурановых элементов быстро уменьшается с ростом порядкового номера, и периоды полураспада изотопов этих элементов (<1—3 с) оказываются чересчур малыми для химического анализа. Правда, совершенствование техники методов химической идентификации позволило изучить некоторые аспекты химии этих элементов. После получения изотопов элементов, oiMd, io2(No) и юз(Ьг) ряд актиноидов стал завершенным последующие элементы с порядковыми номерами 104, 105 и 106 оказались по химическим свойствам похожими на гафний, тантал и вольфрам и заняли свои места в группах IVB, VB и VIB соответственно .  [c.551]

    Свойства, методы получения, области примспезпш отдельных редких металлов, их соединений, сплавов— описаны в соответствующих статьях (см. Актиниды, Берилий, Ванадий, Вольфрам и т. д.). [c.302]

    Эмиссия из металла при наличии на его поверхности мо-номолекулярного слоя постороннего вещества. Плёночные катоды. При изготовлении вольфрамовых нитей в вольфрам примешиваются различные присадки для придания вольфрамовой нити определённых механических свойств (уменьшение хрупкости, нровисаемости и т. п.). Одной из таких присадок является окись тория. При работе с нитями из такого тарированного вольфрама (около 0,5 % ТЬО) было замечено, что при определённой температурной обработке вольфрамовые нити приобретают очень большую эмиссионную способность. Это явление было названо активированием торированных нитей. Полученные таким образом эффективные катоды были названы торированными катодами. Режим активирования следующий. Нить подвергается в вакууме сильному перекалу до 3000° К в течение 30 сек. Затем нить поддерживается при температуре 2000—2100° К. При этой температуре её эмиссия постепенно увеличивается со временем и достигает значений, превосходящих при одной и той же температуре и миллионы раз эмиссию чистой вольфрамовой нити без тория. Высокая эмиссионная способность сохраняется у нити при температурах ниже 2000° К. Если же нить перегреть выше 2100° К, то её активность быстро пропадает и может быть восстановлена лишь повторением процесса активирования. [c.39]

    Большая часть материалов и продуктов проходит тепловую обработку в пламенных печах. Так, подавляющее количество стали получается в мартеновских печах и в конверторах с кислородным и парокислородным дутьем. Сталь, выплавляемая в указанных агрегатах, широко используется в народном хозяйстве и в том Числе в машиностроении. Но некоторое количество вырабатываемой стали, а именно высококачественная высоколегированная сталь, получается в электрических печах, главным образом в дуговых. Эта область металлургии называется электрометаллургией. Она непрерывно развивается, так как народному хозяйству требуются высококачественные стали. История металлургии— это борьба за качество и чистоту. металлов и лх сплавов. Современное электронное машиностроение развивается с использова-ние.м особо чистых металлов и сплавов. Даже незначительное количество растворенных в металле газообразных примесей может при нагреве деталей испортить вакуум в электровакуумных приборах. Современной технике необходимы металлы и сплавы, выдерживающие большие нагрузки при высоких температурах (лопатки газовых турбин, детали ракетных двигателей и т. д.). Для этой цели применяются ниобий, молибден, тантал, вольфрам и их сплавы. Но даже ничтожно малые примеси газов (азот, кислород, водород), а также твердые примеси (углерода и др.) резко снижают механические свойства этих металлов, увеличивают их хрупкость и ухудшают качество сварки. Получение перечисленных металлов производится в электрических печах, позволяющих развить высокие температуры (3 500— 5000°С и выше). [c.87]

    Эти процессы и были использованы с целью получения пламени атомного водорода. Водород, проходящий через электрическую дугу, образованную двумя вольфрамовыми электродами, диссоциирует на атомы (рис. 57). Образующийся атомный водород, попадая на твердую поверхность, превращается в молекулярный, и при этом развивается температура свыше 4000°С. При такой температуре плавится даже самый тугоплавкий из металлов — вольфрам, температура плавления которого 3400°С. Пламя атомного водорода характеризуется восстановительными свойствами, а поэтому оно особенно пригодно для сварки таких металлов, которые подвержены окислению. При реакциях с молекулярным водородом происходит разъединение электронных пар в молекулах его. Это происходит с затратой энергии. В атомном водороде электроны одиночные, а поэтому он активнее молекулярного. Атомный водород в сернокислой среде восстанавливает КМПО4 до Мп504 и КгСгзО, [c.163]

    С этим свойством титана нужно считаться, когда для отделения от хрома, ванадия, молибдена и вольфрама исследуемую пробу сплавляют с перекисью натрия. При этом не только хром, в(анадий, молибден, вольфрам и алюминий переходят в раствор, но в значительной части и титан в виде Ма4Т105, почему раствор, полученный после обработки сплава водой , нужно к ипя-тнть для разрушения образовавшейся вследствие гидролиза, надтитановой кис лоты [c.206]

    Катализаторы и их роль в процессе синтеза аммиака. В качестве катализаторов при синтезе аммиака из элементов испытаны железо, марганец, осмий, вольфрам и др. Но многие из них в заводской практике оказались мало пригодными. Удовлетворяющим предъявляемым требованиям катализатором оказалось металлическое железо, промотированное окислами калия и алюминия, длительно сохраняющее активность. Железный катализатор может быть получен следующим образом. Расплавленную массу железа с соответствующими добавками окисляют в токе кислорода. Затем полученную массу дробят, просеивают, отбирают зерна с диаметром 4—6 и 8—10 мм, загружают в контактный аппарат и восстанавливают азотно-водородной смесью. Восстановленный катализатор обладает достаточно развитой по-верхносрью. Его качество зависит от чистоты исходного сырья. С введением в катализатор окиси кальция повышается его термостойкость, важное свойство при синтезе аммиака. Активность железного катализатора ограничивается пределом от 450 до 575—600° С. При более высокой температуре он быстро теряет активность. В значительной степени железный катализатор чувствителен к ядам, содержащимся в газовой смеси. Даже ничтожно малые количества их, отравляя катализатор, резко снижают выход аммиака. К каталитическим ядам относятся сероводород и другие сернистые соединения, отравляющие его необратимо, а также кислород и кислородсодержащие соединения — окись углерода, водяные пары и т. п., отравляющие обратимо. Особенно резко снижается активность катализатора при низких температурах. [c.87]

    В 1781 г. К. Шееле впервые получил из тяжелых камней , называемых также проклятыми камнями , вольфрамовую кислоту. В 1783 г. испанцы — братья Жозе и Фаусто Д Эльухар — впервые выделили металлический вольфрам и определили некоторые его свойства. В чистом виде металлический вольфрам был получен Вёлером в 1850 г. В 1896 г. под руководством профессора Липина на Путиловском заводе в Петербурге было начато производство вольфрамовых сталей. [c.335]


Смотреть страницы где упоминается термин Вольфрам получение и свойства: [c.346]    [c.281]    [c.162]    [c.685]    [c.13]    [c.265]    [c.333]    [c.393]    [c.571]    [c.47]    [c.75]    [c.313]   
Органические синтезы через карбонилы металлов (1970) -- [ c.126 , c.127 ]




ПОИСК





Смотрите так же термины и статьи:

Вольфрам получение

Вольфрам сернистый, получение и свойства

Вольфрам, свойства

Опыт 2. Получение трехокиси вольфрама и исследование ее свойств

Получение монокристаллов карбида вольфрама и их свойства

Получение, свойства и применение карбонильных порошков вольфрама и молибдена

Свойства и методы получения ДКМ на основе вольфрама

Свойства и методы получения псевдосплавов на основе вольфрама и молибдена

получение и свойства



© 2024 chem21.info Реклама на сайте