Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Барий в природе

    Цеолиты представляют собой гидрированные алюмосиликаты кальция и натрия, реже — бария, калия и других металлов. Это кристаллические вещества, которые встречаются в природе в виде минералов (шабазит, нат-ролит, гейландит). Практическое применение получили в основном синтетические цеолиты, имеющие однородную кристаллическую тонкопористую структуру и одинаковые размеры пор, соизмеримые с размерами молекул поглощаемых веществ. Это свойство цеолитов позволяет с их помощью разделять и очищать вещества на [c.123]


    Вопрос о влиянии природы крекирующего агента подробно рассмотрен в гл. 3 там же показано, что максимальный выход глицерина достигается при добавлении 0,07—0,13 моль гидроокиси щелочноземельного металла на 1 моль глюкозы это соответствует 2—4% СаО или 6—11% ВаО к углеводам. Оптимальная дозировка крекирующего агента может изменяться в зависимости от других факторов, определяющих скорость гидрирования. Общим правилом является необходимость достижения баланса скоростей расщепления углеводов и гидрирования образующихся осколков [31, 49, 50]. Поскольку на скорость гидрирования воздействуют все рассматриваемые факторы, в том числе и дозировка щелочных крекирующих агентов (через pH среды), то заранее предсказать оптимальные концентрации гидроокиси кальция или бария невозможно они определяются при экспериментальной оптимизации процесса гидрогеиолиза. [c.121]

    Если необходимо снизить температуру реакции с 500-550°С (температура, характерная для термического процесса), то это можно сделать, применяя катализатор Активированный уголь проявляет некоторую активность, но обычно используют хлористый барий, нанесенный на уголь. Температура реакции зависит от природы подвергаемого дегидрохлорированию вещества, но начинать реакцию можно с 300°С, Можно также использовать хлорную ртуть, нанесенную на уголь. [c.345]

    Неметаллические свойства водорода выражены довольно слабо, поэтому только наиболее активные металлы — литий, калий, натрий, кальций, барий — образуют сравнительно непрочные гидриды состава LiH, КН и СаН-з, ВаНа, в которых формальная валентность водорода равна —1. Гидриды щелочных и щелочноземельных металлов обладают солеобразной природой и представляют собой твердые кристаллические вещества. Они легко разлагаются водой и кислотами с выделением [c.116]

    По своей природе МДП делятся на зольные и беззольные. К зольным относятся соли (сульфонаты, феноляты, салицилаты металлов) бария, кальция, магния. К беззольным относятся чисто органические соединения. [c.667]

    Ядохимикаты по своей природе разнообразны. Они бывают как органическими, так и неорганическими соединениями. К неорганическим ядохимикатам относятся соединения мышьяка, бария, меди, фтора, серы, фосфора, ртути и т. д. к органическим — соединения, содержащие хлор, ртуть, серу, фосфор и др. [c.236]

    Карбонат бария ВаСОд встречается в природе в виде минерала витерита. [c.439]

    Сульфаты всех металлов, кроме бериллия, встречаются в природе. Растворимость их в воде падает от сульфата бериллия к сульфату бария  [c.50]

    Распространение в природе и получение. Элементы ПА-подгруппы химически активны и встречаются в природе только в виде соединений. Содержание их в литосфере составляет, % (мае.) бериллия 6-10 , магния 2,1, кальция 3,6, стронция 0,04, бария 0,05 и радия 1 т. е. наиболее распространены в природе магний и кальций. [c.293]


    На образец неизвестного вещества наливают немного разбавленной соляной кислоты. При этом на поверхности вещества начинают выделяться пузырьки газа. Природу этого газа устанавливают, пропуская его через раствор гидроксида бария. Если этот газ представляет собой Oj, то, взаимодействуя с раствором, он должен образовывать белый осадок карбоната бария. [c.277]

    Химические факторы — состав и реакция среды, а также ее окислительно-восстановительные действия. В окружающей среде могут содержаться вещества, которые стимулируют или ингибируют жизнедеятельность микроорганизмов. Стимулируют жизнедеятельность микроорганизмов различные загрязнения. Они же являются важнейшим фактором инициирования процесса биоповреждений. Биоцидное действие для многих микробов оказывают соли тяжелых металлов (ртути, свинца, серебра, меди), галогены, некоторые галоиды и окислители, особенно хлорид бария, перекись водорода, перманганат и бихромат калия, борная кислота, углекислый и сернистый газы, фенол, крезол, формалин. Природа действия этих веществ различна, результат практически один — гибель [c.18]

    Имеющие изначальную гидрофобную природу или модифицированные ПАВ в поверхностных условиях. Не набухают в углеводородах, но поверхностно-активны на границе раздела фаз (сажа, гидрофобный мел, гидрофобный аэросил, органо-гуматы, гидрофобный барит). [c.65]

    Таким образом, имеющиеся данные свидетельствуют о существенном влиянии природы отравляющего металла на степень отравления. Видимо, из-за различия в методах отложения металлов и испытания катализаторов единого мнения об относительной силе отравляющих металлов нет. Теоретического объяснения влияния типа металла также не имеется. В работе [202], правда, делается попытка представить в общем виде возможное поведение адсорбированных на поверхности алюмосиликатного катализатора различных катионов. В ней изучалось влияние на каталитическую активность натрия, калия, бария, цинка, магния, водорода, алюминия, тория. Исходный натрийалюмосиликат пропитывали водными растворами соответствующих солей. Общее количество рас- [c.155]

    Деалкилирование с водяным паром. Первые исследования реакции деалкилирования алкилароматических углеводородов с водяным паром были проведены в 1949 г. [46]. Эта работа показала, что при 350—450 °С в присутствии алюмоникелевых катализаторов ксилолы в избытке водяного пара можно превратить в толуол и бензол. Де-алкилирующие свойства никелевых катализаторов зависят от природы носителя способа приготовления катализатора и содержания в них никеля. В качестве носителей исследовали силикагель, окись алюминия [47—49], окись хрома, кизельгур [3, с. 168—176], окиси берилия, магния, кальция, бария, цинка [50, 51]. Наиболее благоприятные результаты получены при использовании в качестве носителя никелевого катализатора окиси хрома и окиси бериллия. [c.257]

    Решающую роль в технологии сушки играет форма связи влаги с материатюм и его дисперсность, они же определяют во многом возможные методы интенсификации процесса. Различные формы связанной влаги обуславливают разные по величине и природе энергии связи с дисперсными системами, подвергающимися сушке. Так в частности проводились эксперименты с такими ветцествами как соли бария (карбонат и гидроксид), а также цеолитами марок ЫаХ и NaA. Согласно классификации академика П.А,Ребиндера по типу связи влаги с материалом, исследуемые вещества относятся к трем из пяти существующих форм. [c.14]

    Существуют вещества — соединения элементов с кислородом, которые, относясь по составу к классу оксидов, по строению и свойства м относятся к классу солей. К таким веществам принадлежат, в частности, пероксиды металлов, например, пероксид бария ВаОг. По своей природе пероксиды представляют собой соли очень слабой кислоты — пероксида (перекиси) водорода Н2О2. К солеобрадным соединениям относятся и такие вещества, как РЬгОз и РЬз04. [c.31]

    Итак, свойства растворов электролитов зависят от природы присутствующих в растворе ионов. Такие свойства кислот, как кислый вкус, способность окрашивать лакмус в красный цвет, взаимодействовать с некоторыми металлами с выделением водорода, относятся к свойствам иона водорода, точнее, гидроксония Н3О+ и не зависят от природы аниона. Например, для жидкого хлористого водорода НС1 безводных серной или уксусной кислот ни одно из перечисленных кнслотных свойств не характерно. Эти свойства появляются только в водных растворах указанных веществ. Аналогично и свойства щелочей как электролитов обусловлены наличием в водных растворах гид-роксид-ионор и не зависят от природы катиона. Вместе с тем и кислоты, и щелочи как электролиты обладают также индивидуальными свойствами, зависящими от природы аниона или катиона соответственно. Например, если к раствору серной кислоты добавить соль бария, а к соляной — соль серебра, то в обоих случаях образуются белые нерастворимые в воде осадки. Эти свойства серной и соляной кислот обусловлены свойствами их анионов образовывать нерастворимые соли с катионами бария и серебра соответственно. [c.133]


    Однако, несмотря на воздействие столь мощных факторов, понятие химического элемента рождалось в муках. Препятствия к его формированию исходили с самых разных сторон, но все они имели одни и те же гносеологические корни. Конечно, наиболее существенным из таких препятствий были алхимические традиции. Претерпев своеобразную модернизацию в недрах ятрохимии и технической химии, эти традиции оказались путами в развитии химии XVII в. Следующим весьма существенным сдерживающим фактором в выявлении индивидуальных химических элементов оказались ложные представления о природе кальцинации металлов ведь даже такой элемент древности , как железо, был ошибочно принят за сложное тело И. наконец, здесь важно отметить еще один барь- [c.33]

    Сульфат бария Ва304 встречается в природе в виде минерала тяжелого шпата. Применяется для приготовления белых красок (литопон, бланфикс и др.). [c.507]

    В природе кальций и магний находятся в виде карбонатов, образующих мощные залежи мела, известняка и мрамора СаСОд, доломита СаСОд- Mg Oз, а также магнезита М СОд. Кальций также встречается в виде кристаллической прозрачной разновидности кальцита или известкового шпата. Стронций и барий встречаются точно так же в виде карбонатов 8гСОз — стронцианит, ВаСОд — витерит. [c.252]

    Элементы II А подгруппы химически активны и встречаются в природе только в виде соединений. Бериллий чаще всего встречается в виде ганерала берилла ВезА12(8Юз)б- Окрашенные примесями разновидности берилла известны как драгоценные камни - изумруд, аквамарин и т.д. Магний, кальций, стронций и барий входят в состав природных сульфатов, карбонатов, фосфатов, силикатов. [c.10]

    Барий довольно широко распространен в природе, составляя 0,05 вес. % в земной коре. В природе встречается в виде солей, главным образом, витерита ВаСОз и барита ВаЗОд. Плотность бария 3,75 г/сл , температура плавления 704° С, температура кипения 1540° С. На способности бария энергично реагировать с кислородом и азотом основано главное его применение в качестве гетера в производстве электровакуумных приборов. Так как барий является средством увеличения электронной эмиссии, то наряду с другими гетерами предпочтение в производстве электронных приборов отдается барию. [c.323]

    Бромат-ионы (концентрированный раствор) с хлоридом бария образуют белый кристаллический осадок бромата бария ВаВгОз, растворимый в НС1 и HNO3. С органическими аминами бромат-ионы в кислой среде образуют окрашенные продукты, цве которых зависит от природы органического реагента. [c.457]

    Последний щелочный элемент (франций) начинает седьмой период. Этот элемент не представлен в природе и был искусственно синтезирован. Валентный электрон этого элемента находится в 75-состоянии. Седьмой элемент заполняется подобно шестому. Внешние оболочки бария и актиния подобны таковым бария (радия) и лантана (актиния). Соответственно лантанидам существует четырнадцать актинидов, завершаемых 103 элементом — лауренсием. Электронные оболочки синтезированного в СССР 104 элемента подобны оболочке гафния, а оболочка 106 элемента, также синтезированного в СССР, подобна оболочке вольфрама. В последнее время в СССР был синтезирован 107 элемент. Седьмой период должен завершиться на 118 элементе, который должен быть аналогом радона. [c.319]

    Для стронцкя и бария сернокислые минералы более распространены, чем углекислые. Радий в природе связан с урановыми рудами (на 1000 кг урана руда содержит лишь 0,3 г радия). -  [c.386]

    Эволюция локализованных возбуждений. Дальнейшая судьба образовавшихся радикалов и экситонов также во многом определяется исходной геометрией аниона, симметрией местоположения, степенью орбитального вырождения, природой центрального атома аниона. Если орбиталь, занимаемая неспаренным электроном, вырождена, то эффект Яна-Теллера приводит к искажению ядерной конфигурации вплоть до диссоциации. Устойчивость к диссоциации определяется химической природой радикала. Для координационно-насыщенных соединений наблюдается разрыв связи, а для ненасыщенных - нет. При локализации экситона наблюдаются аналогичные вибронные эффекты. Энергия возбуждений анионов заведомо превышает энергию разрыва любой из химических связей внутри многоатомного аниона. Прямая диссоциация синглетных возбуждений кислородсодержащих анионов с образованием атомарного или молекулярного кислорода запрещена правилом сохранения мультиплетности, в связи с чем она протекает через образование комплексов с переносом заряда типа [ХОп-т От]. Экспериментально такие комгшексы обнаружены в нитратах, хлоратах и перхлоратах. Первоначально при диссоциации происходит селективный разрыв наиболее длинной связи (даже при разности длин связей менее 1%), что экспериментально подтверждено для нитратов щелочных металлов, хлората калия, перхлората бария. [c.98]

    Присутствие дисульфидов в нефтях может быть результатом вторичных реакций меркантанов с такими окислителями, как воздух или элементарная сера. Тем не менее дисульфиды встречаются в природе даже в таких неожиданных местах, как полости палеозойского возраста в пластах кварца [67, 85]. Мети.и- и изопропилдисульфиды обусловливают запах эвкалипта [68]. История дисульфидов тесно связана с историей меркаптанов и сульфидов. Органические дисульфиды были открыты в 1834 г., когда удалось получить этилдисульфид нагревом калийэтилсульфата с сернистым барием. Некоторые физические свойства дисульфидов приведены в табл. 11. [c.276]

    Металлический барий не находит широкого применения. Важнейшими соединениями этого элемента являются сульфат бария Ва304, очень плохо растворимый в воде и в разбавленных кислотах, и хлорид бария ВаС12-2Н20, растворимый в воде. Сульфат бария встречается в природе в виде минерала барита. [c.523]

    Были изучены необратимые электродные потенциалы стали, дуралюмина и магниевого сплава в водных вытяжках среднерастворимых хроматных пигментов, таких, как хромат цинка и хромат стронция, и такого сильнорастворимого пигмента, как смешанный хромат бария-калия. Установлено, что потенциалы металлов сильно зависят от природы пигментов. Как видно из рис. 8.5, по пассивирующим свойствам хроматные пигменты по отношению к стали располагаются в следующий ряд смешанный хромат бария-калия >- хромат стронция > хромат цинка. [c.131]

    БАРИЯ КАРБОНАТ ВаСОз, крист. выше ЮОО °С ра лаг., не плавясь плохо раств, в воде. В природе — минерал нитс рит. Получ. карбонизацией р-ра ВаЗ. Примеи., для иолуч, ВаО и Ba(NOa)2 компонент оптич. стекол, эмалей, глазурей. [c.66]


Смотреть страницы где упоминается термин Барий в природе: [c.41]    [c.619]    [c.436]    [c.125]    [c.110]    [c.278]    [c.393]    [c.38]    [c.482]    [c.93]    [c.132]    [c.16]    [c.426]    [c.188]    [c.321]    [c.84]    [c.17]    [c.519]    [c.66]    [c.66]    [c.67]   
Основы общей химии Том 2 (1967) -- [ c.312 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.146 , c.159 , c.165 , c.567 ]




ПОИСК







© 2025 chem21.info Реклама на сайте