Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы олова, коррозия в атмосфер

    Сплав олово — никель. Покрытие сплавом олово — никель, содержащее 65% 5п, обладает высокой химической стойкостью по отношению ко многим агрессивным средам разбавленным серной и соляной, концентрированной азотной кислотам, растворам хлористого натрия и в условиях 100%-ной влажности [167, 185]. Коррозионные испытания в условиях промышленной атмосферы [185] показали, что сплав, осажденный с подслоем меди, обладает значительно большей коррозионной стойкостью, чем никелевое покрытие. Следует отметить, что оловянно-никелевое покрытие, нанесенное без подслоя меди, в атмосферных условиях не предохраняет сталь от коррозии. [c.51]


    Алюминий и его сплавы чувствительны к контактной коррозии. В обычной атмосфере усиливает коррозию контакт с медью и медными сплавами, с никелем и его сплавами, с серебром. Допустим контакт со сталями, кадмием, цинком, хромом, титаном, магнием. В морской и пресной воде не допустим контакт с медью и ее сплавами, с титаном, с нержавеющими сталями, с никелем, оловом, свинцом, серебром. Допустим контакт с цинком и кадмием. [c.75]

    Как показывают длительные испытания, в морской агрессивной атмосфере легирование меди алюминием, цинком, никелем и оловом повышало их сопротивляемость коррозии и поэтому алюминиевые бронзы, томпак, сплавы меди с никелем и цинком, сплавы с никелем и оловом оказываются более стойкими, чем чистая медь. Алюминий оказывает благотворное влияние также в субтропической морской и в сельской атмосферах. Алюминиевые бронзы в этих условиях обнаружили более высокую стойкость. В других атмосферах, и в особенности в промышленных, легирование меди положительных эффектов не давало. Более того, оно часто приводило к понижению стойкости основного компонента сплава. Высокопрочные латуни, содержащие, кроме меди, цинк (20—24%), марганец (2,5—5,0%), алюминий (3—7%) и железо (2—4%), оказались во много раз менее стойкими по сравнению с чистой медью более подробно о коррозионных свойствах различных медных сплавов см. в гл. V). [c.253]

    Особой коррозионной стойкостью в естественных условиях отличаются сплавы меди с никелем и меди с оловом (бронзы). Сплавы меди с никелем хорошо сопротивляются коррозии в любой атмосфере. Особыми преимуществами перед другими сплавами они обладают в морских атмосферах и в атмосферах железнодорожных тоннелей. [c.299]

    Галогены. Хлор, бром, фтор и их водородные соединения в сухом виде в обычных температурных условиях не действуют на латунь и оловянистые бронзы. Во влажном же состоянии они сильно взаимодействуют как с медью, латунью и оловянистыми бронзами, так и с другими сплавами. При высокой температуре как в сухой атмосфере, так и во влажной, коррозия оловянистых бронз резко усиливается в результате образования летучих соединений олова. [c.300]

    Оловянно-никелевые покрытия с содержанием олова 65% обладают высокой стойкостью к корро зии в атмосферных условиях, в том числе и при наличии в атмосфере сернистокислых соединений. В водных растворах они пассивны и устойчивы к уксусу, щелочам, фруктовым сокам и др. Способность этих покрытий усиливать коррозию металла подложки можно предотвратить путем тщательного нанесения сплава в два слоя с промежуточным осаждением тонкого слоя меди. Оловянно-никелевые покрытия широко применяются для металлоизделий, используемых в закрытых помещениях. [c.153]


    Контактная коррозия в атмосферных условиях в сильной степени зависит от состава атмосферы. Так, например, коррозия магниевого сплава МЛ5 в контакте с алюминиевым сплавов В95 при переходе от промышленной атмосферы к морской увеличивается в несколько раз. Аналогичное явление наблюдается для многих пар. В атмосферных условиях не возникает контактной коррозии между медью, серебром и золотом, между железом, углеродистыми сталями, свинцом и оловом, между алюминием цинком и кадмием. [c.107]

    Низкотемпературные твердые припои на основе серебра известны уже много лет и широко применяются в технике и химической промышленности. Ежегодное потребление этих сплавов составляет много тонн, так как способность соединять почти все распространенные конструкционные материалы делает такие припои незаменимыми при изготовлении самых различных конструкций. Припои па основе серебра обладают высокой стойкостью к коррозии в промышленных атмосферах, а кроме того, характеризуются отличной прочностью даже при гораздо более высоких температурах, чем те, при которых могут использоваться припои на основе свинца или олова. [c.223]

    Пятилетние испытания определенно показали, что скорость коррозии в городской атмосфере для меди и сплавов меди с небольшим количеством мышьяка, никеля, кремния, олова и кадмия уменьшается со временем очевидно, здесь образуется защитная пленка. Нет данных, что образуется защитная пленка иа цинке, и мало заметно уменьшение скорости коррозии никеля эти факты находятся в согласии с растворимым характером продуктов коррозии обоих металлов. [c.199]

    Не рекомендуется допускать сочетание сплавов Си — № с алюминием в морской воде или морской атмосфере. В морской воде, солевых и кислых растворах, а иногда и в некоторых пресных водах сочетание сплавов Си — № со стальными трубами может привести к коррозии последних в местах соприкосновения (особенно страдает резьба). При сочетании сплавов Си — N1 с цинком, свинцом или оловом в морской воде и других растворах с низким электросопротивлением следует ожидать ускоренной коррозии менее благородного металла. [c.215]

    Двухфазные припои на основе эвтектики 97 % РЬ —2,5 % Ag состоящие из двух твердых растворов на основе свинца и серебра более теплостойки, чем двухфазные сплавы 5п—РЬ (табл. 10) К таким припоям относятся припой ПСр 3, содержащий - 3 % Ag и припой РЬ — 6 % Ag. Эти припои отличаются пониженной сгю собностью к растеканию и затеканию в зазоры. Соединения из ме ди, паянные свинцовыми припоями ПСр 2,5 и ПСр 3, подвержены интенсивной коррозии во влажной атмосфере и дождевой воде. Для улучшения этих свойств в свинцово-серебряные припои вводят олово, а также олово и кадмий. [c.93]

    Наиболее агрессивными из атмосфер по отношению к медным сплавам оказались промышленные, в них коррозия выше, чем в морской и сельской. Алюминиевые бронзы Р), сплавы медь — никель — цинк (Р), а также медь — никель — олово ф, обладающие обычно высокой противокоррозионной стойкостью в морской воде, обнаружили также незначительную коррозию и в промышленно-морской атмосфере. [c.296]

    В типичных условиях промышленной атмосферы цинк растворяется из покрытия слишком быстро и покрытие олово — цинк выходит из строя быстрее, чем цинковое или оловянное той же толщины, однако они могут служить более продолжительное время, чем кадмиевое покрытие в этих условиях [34]. В морских условиях при постоянной влажности например в условиях переменного погружения в приливной зоне моря, срок службы покрытий сплавом олово — цинк выше, чем цинковых, возможно, вследствие того, что продукты коррозии обладают более высокими защитными свойствами. Однако в условиях под навесом и в специальных средах покрытие типа олово — цинк применяется наиболее успеш но. Облегчение этим покрытием процесса пайки в комбинации с защитой в порах делает его наиболее подходящим для применения в электро- и радиоприборах для покрытия отдельных частей или деталей инструментов и механизмов. Оно также используется для корпусов огнетушителей и для деталей, которые применяют в гидравлических системах. [c.428]

    Покрытия сплавом из олова и цинка (- 75% олова) осаждаются из горячей ванны, содержащей олово в виде станната и цинк в виде цианида, наряду со свободной щелочью и цианидом. Аноды применяются того же самого состава. Детали, покрытые таким путем, находят применение в радио и телевизионных установках, обычно конкурируя с кадмированными деталями они используются для покрытия определенных частей самолетов, автомобилей и велосипедов. Покрытие может быть запассивировано в 2%-ной горячей хромовой кислоте и является подходящей основой для покраски. Другой вид использования этого покрытия связан с контактной коррозией. Коррозионные испытания в морской и промышленной атмосферах показали, что алюминиевые конструкции, соединенные со стальными болтами, меньше подвергаются контактной коррозии, если сталь покрыта сплавом олова и цинка. Через 6 мес. болты еще легко вывинчиваются соответствующие результаты с цинковыми или кадмиевыми покрытиями на болтах менее хороши. Поверхностй, покрытые сплавами олова и цинка, легко паяются и позволяют использовать некоррозионные флюсы, что является большим [c.568]


    Сплав медь—олово (бронза). Покрытие сплавом медь—олово, или бронзирование, применяют как для защиты от коррозии, так и для декоративной отделки поверхности изделий. Покрытие малооловянистьш сплавом (10—20% олова) золотисто-желтого цвета используют также в качестве подслоя взамен медного и никелевого покрытий перед хромированием. Высоко-оловянистый сплав (40—45 % олова), так называемая белая бронза, в некоторых случаях может служить заменой серебра. Несмотря на то, что значение удельного электрического сопротивления сплава Си—5п значительно выше, чем у серебра, в промышленной атмосфере, где есть примеси сернистых соединений, оно остается стабильным, в то время, как у серебра, возрастает в десятки раз. По этой причине покрытия белой бронзой рекомендуют для нанесения на электрические контакты. [c.60]

    Титан и его спчавы обладают очень высокой коррозионной стойкостью в морской воде, влажной морской и промышленной атмосфере. В этих средах скорость коррозии титановых сплавов не превышает 0,0001 мм/год. Несмотря на то, что титан относится к наиболее термодинамически неустойчивым металлам, его высокая коррозионная стойкость обусловлена защитными свойствами образующихся гидридных и оксидных пленок. Титановые сплавы устойчивы в окислительных средах даже в присутствии больших количеств хлор-ионов в большинстве органических сред. Исключение составляют серная, соляная,. муравьиная, щавелевая, винная, лимонная, смесь ледяной уксусной кислоты с уксусным ангидридом. Технические титановые сплавы, легированные алюминием (до 6%), марганцем (1...2%), оловом широко используются в химическом машиностроении, пищевой промышленности. [c.158]

    Тамман и Кестер [156] установили, что коррозия цинка, кадмия, олова, алюминия, сурьмы, висмута, хрома, железа, кобальта и никеля в атмосфере сухого сероводорода является ничтожной. К аналогичным выводам пришли Аккерман, Тамаркина и Шултин [157], изучавшие поведение в сухом сероводороде алюминия, латуни, железа, чугуна и легированных сталей. При комнатной температуре указанные сплавы не корродировали, при 100 наблюдалось уже незначительное усиление коррозии. Шкловский [158], изучавший подробно поведение металлов в сухом и влажном сероводороде, также считает, что сухой сероводород при нормальной температуре слабо действует на металлы. [c.193]

    Серьезной проблемой являются контакты, включающие магниевые сплавы. Лабораторные эксперименты, а также результаты естественных испытаний, изложенные выше, показывают, что магниевые сплавы должны подвергаться усиленной коррозии в агрессивных атмосферах, в контакте с большинством металлов. Только алюминий, цинк и олово, защищенные хорошими органическими покрытиями, не вызывают усиленной коррозии магниевых сплавов. Правда, высказываются сомнения, что при такой высокой разности потенциалов и значительных коррозионных токах обычные органические покрытия вряд ли способны пода-130 [c.130]

    Перспективными для использования в качестве материала оболочек и трубопроводов, работающих в воде под давлением, являются созданные в последнее время сплавы на основе циркония с добавками олова, кремния, железа, никеля и хрома. Сплавы с содержанием 1,5%5п 0,11%Ре 0,1%Сг 0,042%К1 0,0038%Н и до 0,0834%51, полученные методом электродуговой плавки в атмосфере аргона, были испытаны на коррозию в среде пара при 400° С в течение 28 дней. Привес сплавов после испытания составлял для сплава с 0,025% 81—90 0,045%51 —60 жг/(5ж2 и 0,083%51 — 58 жг/5жЧ8]. [c.351]

    Электролитический сплав 5п—2п, содержащий 80% 5п и 20% 2п, отличается высокими защитными свойствами в условиях атмосферной коррозии. В промышленной атмосфере оловянно-цинковые покрытия разрушаются меньше, чем цинковые покрытия. Этот сплав проявляет анодный характер защиты стали от коррозии и обладает меньшей пористостью, чем покрытия чистым оловом. При малом срдержании цинка в сплаве ( 10%), так же как и при содержании его более 50 %, покрытие сплавом теряет свои преимущества перед покрытием чистыми металлами. Важным достоинством этого сплава является способность к пайке, которая сохраняется длительное время [5, 53, 54]. В соответствии с ГОСТ 14623-69 этот сплав может применяться в очень жестких условиях эксплуатации. Имеются сведения о применении в США автоматических линий [55] для электроосаждения сплава 2п— 5п. Практическое применение получил щелочно-цианистый электролит, в котором оба металла присутствуют в виде комплексных соединений олово в виде станната, а цинк в виде цианистой соли. [c.213]

    Свинец, стандартный потенциал которого V = —0,126 в, находит большое применение в сернокислотном производстве, а также для защиты от разрушения подземных кабелей. Стоек в атмосфере, загрязненной сернистыми соединениями, в серной кислоте — горячей до 80% и холодной до 96%, в растворах, содержащих ионы 50 , а также в хромовой, плавиковой и холодной фосфорной кислотах. При невысоких температурах стоек в разбавленной соляной кислоте (до 10%-иой концентрации). Не стоек в азотной, уксусной и муравьиной кислотах, а также в щелочах. Перенапряжение водорода на свинце очень велико, и потому скорость коррозии свинца в кислотах, а также в дистиллированной и дождевой воде возрастает в присутствии кислорода. Стоек в жестких водах, содержащих Са304 или карбонаты кальция. Чистый свинец обладает малой прочностью, и потому для изготовления, например, труб и кислотоупорных насосов, а также нерастворимых анодов применяют сплавы свинца с сурьмой (6—13% 5Ь). Добавви в свинец теллура (до 0,05%) и олова (3—7%) предупреждают межкристаллитную коррозию свинца. [c.58]

    Из медно-оловянных сплавов практический интерес представляют содержащие 10—25 и 40—45 % олова. В первом случае покрытия имеют золотисто-желтую окраску. Они пригодны для замены никелевого подслоя при декоративном хромировании, а также как однослойное покрытие стальных деталей, эксплуатирующихся в горячей пресной воде. Такие сплавы целесообразно использовать для местной защиты стальных деталей при азотировании, так как они несколько лучше предотвращают диффузию азота в сталь, чем медные и оловянные покрытия такой же толщины. Осадки так называемой белой бронзы, содержащей 40— 45 % олова, серебристого цвета, пригодны для защитно-декора-тивной отделки изделий, эксплуатирующихся в закрытых, сухих помещениях, но плохо сопротивляются коррозии в промышленной атмосфере. Они более, чем серебряные покрытия, стойки к воздействию сернистых соединений, что проявляется в относительно большей стабильности переходного электрического сопротивления. [c.91]

    Контакт со сталью, хотя и менее опасен, чем контакт с медью или свинцом, также может ускорять коррозию алюминия. Вместе с гем в некоторых естественных водных средах и в ряде других случаев алюминий может быть защищен за счет черных металлов. Нержавеющие стали способны усиливать разрушение алюминия, особенно в морской воде и в морской атмосфере, в то же время высокое. электрическое сопротивление поверхностных окис-ных пленок обоих материалов заметно ослабляет контактные явления в менее агрессивных средах. Титан ведет себя в эгом от юшении аналогично стали. Сплавы алюминий- цннк, используемые в качестве расходуемых анодов для защиты стальных конструкции, содержат также небольшие добавки олова, индия или ртути, улучшающие характеристики растворения и смещающие потенциал к более отрицательным значениям. [c.83]

    Потенциал пробоя нелегированного циркония, выплавленного из циркониевой губки, полученной по методу Кролла, быстро достигается при экспозиции в паре или горячей воде при рабочих температурах реакторов. Еще в ранних исследованиях, проведенных в США, было установлено, что такое поведение объясняется почти неизбежным присутствием в металле азота, вредное воздействие которого можно компенсировать введением добавок олова [71] — так был создан сплав Циркалой 2, содержащий примерно 1,5% Зп, 0,1 % Ре, 0,1% Сг и 0,05% N1, предназначенный для водоохлаждаемых реакторов. Известно, одиако, что даже в случае применения этого сплава на стойкость конструкции оказывают влияние технологические операции обработки материала в ходе его изготовления. По этой причине используется строгая система коррозионных испытаний [72, 73], назначение которой — подтвердить сохранение высокой коррозионной стойкости заготовок и конечной продукции. Испытания включают выдержку тщательно подготовленных образцов в течение 14 сут в автоклаве в атмосфере чистого водяного пара при температуре 400° С и давлении 10 МН/м . Материал удовлетворительного качества после таких испытаний имеет прирост массы 28 10 мг/дм и покрыт глянцевой черной пленкой. Неудовлетворительное качество материала обнаруживает себя высоким значением прироста массы (достигающим 100 мг/дм2), а также внешним видом поверхностной пленки, состоящей из белого продукта коррозии. [c.201]

    Олово защищает медь от коррозии в нейтральной воде. Чистое олово анодно по отношению к меди и за счет собственного растворения защищает медь в местах нарушения покрытия. Обе интерметаллические фазы (СиеЗпб и СизЗп) являются сильными катодами по отношению к меди и поэтому в разрывах покрытия, полностью превратившегося в сплав, коррозия ускоряется. Для того чтобы покрытие могло эксплуатироваться длительное время, необходимы достаточно толстые слои олова, например 25—50 мкм. Другая проблема, обусловленная диффузией, возникает при нанесении гальваническим путем олова на латунь. Цинк очень быстро проходит на поверхность оловянного покрытия и в условиях хранения во влажной атмосфере образуется пленка продуктов коррозии, которая в сильной степени ухудшает паяемость. Подслой меди или, что еще лучше, никеля, обычно устраняет эти затруднения. [c.353]

    В морской атмосфере наиболее устойчивыми к коррозии оказались свинец, свинцовые сплавы, никель, сплавы никель-медь, бронзы, сплавы, богатые медью, и техническая медь. Малоустойчивыми к коррозии являются различные сорта цинка, олово, марганцовистая бронза, дюралюминий, технический алюминий и сплав алюминий-магний-кремняй. Латуни, дюралюминий с алюминиевым покрытием и алюминиево-марганцевый сплав несколько более устойчивы к коррозии, чем предыдущая группа. [c.200]

    Пайка алюминия. Обыкновенные припои, применяемые для тяжелых металлов и катодные по отношению к алюминию, не пристают к последнему вследствие наличия на алюминии оксидной пленки. Специальные припои применимы, но многие из них анодны по отношению к алюминию, и опыты, произведенные в 1927 г., показали, что они легко корродируют, если спай помещали в раствор соли или в кембриджскую воду . Никакого особого разрушения не наблюдается в случае обыкновенного свинцовооловянного припоя, однако количественное определение интенсивности коррозии показало, что коррозия алюминия до некоторой степени увеличивается и в этом случае, в особенности если поверхность спая велика. Во вся-КО.М случае, прихменение обыкновенного припоя для а-тюминия не практично. Небольшое количество свинца в цинковооловянном припое, повидимому, несколько увеличивает стойкость спая в атмосфере. Для спайки алюминия прн высокой температуре Силмэн рекомендует сплав — 50% цинка, 46,5% олова, 2,5% меди и 1,0% свинца. Имеется много различных припоев для алюминия, дающих удовлетворительные результаты, но плавящихся при сравнительно высоких те.ипературах (они большей частью содержат много алюминия). Широко приме- [c.656]

    Однако, в Шеффильде, где атмосфера сильно загрязнена, покрытия из свинца и сплава свинца с оловом, которые являются катодными по отношению к стали, оказались столь же устойчивыми, как и другие покрытия быстро образуется пленка сульфата свинца, а появляющиеся пятна ржавчины в течение длительного периода остаются незначительными (характерно, что свинцовое покрытие, которое вблизи Шеффильда давало коррозию лишь на 1% площади через 4 года, в морском климате Халшота не защищало уже через 2,2 года и 50% поверхности). [c.598]


Смотреть страницы где упоминается термин Сплавы олова, коррозия в атмосфер: [c.18]    [c.409]    [c.217]    [c.485]   
Коррозия металлов Книга 1,2 (1952) -- [ c.340 ]

Коррозия металлов Книга 2 (1952) -- [ c.340 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосфера

Коррозия в атмосфере

Олово Коррозия

Олово сплавы

Олово, коррозия в атмосфере

Сплавы олова, коррозия в атмосфер с палладием

коррозия коррозия в атмосфере



© 2025 chem21.info Реклама на сайте