Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеиновые кислоты нуклеотидные последовательности

    Первичная структура нуклеиновых кислот определяется последовательностью нуклеотидных звеньев, связанных ковалентными связями в непрерывную цепь полинуклеотида. [c.442]

    Ряд важнейших сведений о структуре высокополимерных РНК получен благодаря исследованиям некоторых зарубежных лабораторий (Доти, Гирер) и учеными нашей страны (Белозерский, Спирин, Гаврилова). Таким образом, в синтезе белка участвуют три типа РНК, а также ДНК клеточного ядра. В процессе биосинтеза белка происходит взаимодействие указанных нуклеиновых кислот. Аминокислотная последовательность в синтезируемой белковой цепи определяется (кодируется) нуклеотидной последовательностью РНК. Другими словами в зависимости от распределения четырех сортов нуклеотидов в цепи молекулы и-РНК происходит распределение 20 аминокислот п синтезируемой белковой цепи. [c.81]


    В природе синтез белков всегда направлен на формирование определенной первичной структуры и протекает в водных средах при обычных температурах в соответствии с универсальным генетическим кодом под влиянием специфических ферментов. Основная схема этого процесса в настоящее время уже известна. Всю генетическую информацию, обеспечивающую формирование определенной первичной структуры полипептидных цепей и макромолекул белка, несут важнейшие биополимеры, относящиеся к классу сложных полиэфиров, - нуклеиновые кислоты. Эта информация определяется последовательностью соединения друг с другом различных нуклеотидных оснований - звеньев этого полимера. [c.349]

    Нуклеиновые кислоты, как и белки, обладают первичной структурой (под которой понимается и последовательность чередования нуклеотидных остатков) и трехмерной структурой (вторичной, третичной, четвертичной). [c.662]

    Гибридизация нуклеиновых кислот, позволяющая с большой точностью выявить специфические нуклеотидные последовательности на основе их способности связывать комплементарные основания. [c.106]

    Опыты по гибридизации позволили исследовать гомологичность нуклеиновых кислот из разных источников. Вначале молекулы расщепляют (например, с помощью ультразвука) на фрагменты длиной 1000 нуклеотидов и подвергают денатурации. Фрагменты денатурированной ДНК смешивают с денатурированной ДНК из другого источника. Участки ДНК разных видов, имеющие близкие нуклеотидные последовательности, в той или иной степени гибридизуются, тогда как участки с сильно различающимися последовательностями гибридизации не поддаются. Рассмотрим один из вариантов постановки таких экспериментов. Денатурированную ДНК определенного организма, не подвергавшуюся деградации, заключают в агаровый гель [90] или наносят на нитроцеллюлозный фильтр [91]. Фрагменты ДНК из другого источника пропускают через колонку с ДНК-содержащим агаром или через фильтр с абсорбированной ДНК. Комплементарное спаривание соответствующих фрагментов задерживает их на колонке или фильтре, тогда как фрагменты, не нашедшие себе партнеров , свободно проходят дальше. [c.143]

    Самыми мелкими из РНК-содержащих вирусов являются бактериофаги R17, MS2 и Qp, нуклеиновые кислоты которых содержат 3500—4500 нуклеотидов и имеют всего три гена. Их нуклеотидная последовательность полностью расшифрована (гл. 15, разд. В.2.и).  [c.288]


    Линейный набор стандартных элементов со стандартными связями. Белковые ферменты возникли по чрезвычайно простой организационной схеме. Аминокислотная последовательность полипептидной цепи белка есть коллинеарное и единственное представление нуклеотидной последовательности исходной нуклеиновой кислоты. Три соседних нуклеотида кодируют одну аминокислоту (рис. 1.5, б). Таким образом, полипептиды сходны с нуклеиновыми кислотами в том, что это линейные цепные молекулы, построенные из стандартных элементов с одной стандартной связью.. Это обеспечивает простое и универсальное считывание с нуклеиновых кислот в процессе синтеза полипептидов. Простота линейных систем широко используется, в частности, в электронно-вычислительной технике, где хранение и вызов информации обычно осуществляются с помощью одномерных блоков, записанных в стандартней форме на линейных носителях, например магнитных лентах. [c.12]

    Используя принятый для нуклеозидов однобуквенный код, 5 -фосфаты записываются с добавлением латинской буквы р перед символом нуклеозида, З -фосфаты — после символа нуклеозида. Аденозин-5 -фосфат обозначается рА, аденозин-З -фосфат — Ар и т. п. Эти сокращенные обозначения используются, как правило, для записи последовательности нуклеотидных остатков в нуклеиновых кислотах. По отношению к свободным нуклеотидам в биохимической литературе широко используются их названия как монофосфатов с отражением этого признака в сокращенном коде, например АМР для аденозин-5 -фосфата и т. д. (см. табл. 13.1). [c.440]

    В понятие первичной структуры нуклеиновых кислот наряду с нуклеотидным составом входит нуклеотидная последовательность, т. е. порядок чередования нуклеотидных звеньев. Общий подход к установлению последовательности нуклеотидных звеньев заключается в использовании блочного метода сначала полинуклеотидную цепь направленно расщепляют на более мелкие блоки (олигомеры) и в них определяют нуклеотидную последовательность. Такой анализ повторяют, используя другие расщепляющие агенты, делящие цепь на фрагменты в иных местах по сравнению с предыдущими приемами. В целом полинуклеотидную цепь расщепляют каждый раз на довольно короткие фрагменты. [c.444]

    Ученые Эвери, Мак-Карти и Мак-Леод в 1944 г. на примере видоизменения бактерий доказали значение структуры молекулы ДНК для проявления ее биологических свойств. Эти видоизменения, называемые трансформацией, заключаются в том, что очищенная ДНК, выделенная из клеток одного штамма, обладавших определенным наследуемым признаком, способна вызвать возникновение этого признака у клеток другого штамма, ранее им не обладавших. Эти новые признаки передавались затем по наследству в последующих поколениях. Позднее Херши и Ченз также наблюдали, что при заражении бактерий некоторыми вирусами (фагами) внутрь бактерий проникает почти исключительно ДНК вируса. Более того, удалось заразить бактерию и получить нормальное потомство вируса при введении в нее очищенной ДНК вируса. Такой инфекционностью обладает очищенная ДНК при выделении без нарушения целостности ее молекул. Все воздействия, которые приводили к тем или иным нарушениям структуры молекул ДНК, вызывали потерю ее специфических свойств. Эти замечательные эксперименты позволили, с одной стороны, отождествить существовавшее абстрактное понятие наследственное вещество с конкретным химическим соединением, т. е. прямым доказательством генетической роли ДНК, с другой стороны, выявить значение целостности структуры молекул ДНК для проявления ее биологических свойств и прийти к выводу о настоятельной необходимости изучения структуры ДНК. Считают, что специфичность функций нуклеиновых кислот определяется последовательностью расположения составляющих их нуклеотидных остатков, а также геометрической конфигурацией последних (конформации). [c.74]

    В середине 1960-х годов начались исследования нуклеотидных последовательностей РНК. Первыми были определены первичные структуры тРНК (Р. Холли и сотр., 1965 А. А. Баев и сотр., 1967). Развитие техники фракционирования фрагментов нуклеиновых кислот и прежде всего гель-электрофореза (Ф. Сэнгер и сотр.) позволило в начале 1970-х годов приступить к изучению первичной структуры высокомолекулярных РНК. В 1976—1978 гг. были созданы исключительно быстрые и эффективные методы секвени-рования ДНК и РНК (А. Максам и У. Гилберт, Ф. Сэнгер и сотр.), которые позволили за короткое время получить огромную информацию о первичной структуре генов, их регуляторных элементах, вирусных и рибосомных РНК и т. д. [c.7]

    Во-вторых, для живой клетки такое огромное разнообразие возможных структур, включающих считанные единицы мономерных остатков, означает гигантские информационные возможности, совершенно несопоставимые по мощности с возможностями такого классического информационного материала, как последовательность нуклеотидных звеньев в нуклеиновых кислотах. Вспомним трехбуквенный генетический код позволяет построить из четырех основных природных нуклеотидов всего 64 слова , тогда как из восьми гексоз (а разнообразие природных моносахаридов гораздо больше) уже можно составить 1 645 056 трисахаридных слов .  [c.25]


    Расщепление нуклеиновых кислот под влклнием специфических ферментов — эндо- и экзонуклеаз — сопровождается разрывом фосфо-диэфирной связи и образованием продуктов различной величины, которые могут быть разделены методами электрофореза и хроматографии. Это широко используется при анализе последовательности нуклеотидов в молекулах РНК и ДНК., Особое значение при развитии генной инженерии получило расщепление ДНК специфическими эндонуклеазами (рестриктазами), позволяющее получать отрезки ДНК определенной длины и нуклеотидного состава. > [c.175]

    Генетический код, выраженный триплетными кодонами, может быть записан нуклеотидной последовательностью ДНК или мРНК. Поскольку большая часть экспериментальной работы была проделана с мРНК, кодоны для аминокислот даются в том виде, в каком они встречаются в этой нуклеиновой кислоте (табл. 27-4). Соответствующие им последовательности оснований в ДНК и транспортной РНК (тРНК) называются антикодонами . [c.485]

    Скорость восстановления (ренатурации) двойной спирали зависит от вероятности столкновения двух комплементарных нуклеотидных последовательностей и их концентрации в растворе. Скорость реакции гибридизации можно использовать для определения концентрации любьсс последовательностей РНК или ДНК в смеси, содержащей и другие фрагменты нуклеиновых кислот. Для этого необходимо иметь чистый одноцепочечный фрагмент ДНК, комплементарный к тому фрагменту, который надлежит выявить. Обычно фрагмент ДНК, полученный клонированием либо химическим путем, метят по Р в целях прослеживания включения фрагмента в состав дуплексов при гибридизации. Одноцепочеч- [c.110]

    ДНК-зонды применяют для поиска родственных генов в реакциях гибридизацрш с РНК — для выявления экспрессии данного гена в различных клетках. Для вьывления молекул нуклеиновых кислот, комплементарных всему зонду (или его участку), ДНК-зонды часто сочетают с методом гель-электрофореза, что позволяет получать информацию о размерах гибридизируемых молекул ДНК. Эффективное использование современных приборов, способных автоматически синтезировать любые нуклеотидные последовательности за короткий промежуток времени, дало возможность перестраивать гены, что представляет собой один из важных аспектов генной инженерии. Обмен генами, а также введение в клетку гена другого вида организма осуществляют посредством генетической рекомбинации in vitro. Этот подход был разработан на бактериях, в частности на Е. соИ. Он основан на важном свойстве ДНК — способности к перестройкам, изменяющим комбинацию генов в геноме и их экспрессию. Такая уникальная способность ДНК позволяет приспосабливаться данному виду к изменяющейся среде. Генетическую рекомбинацию подразделяют на два больших класса общую рекомбинацию и сайт-специфическую рекомбинацию. В процессе общей рекомбинации генетический обмен в ДНК происходит между гомологичными нуклеотидными последовательностями, например между двумя копиями одной и той же хромосомы в процессе мейоза (кроссинговера), или при скрещивании и перегруппировке генов у бактерий. [c.112]

    В настоящее время основную схему организации живой материи можно считать известной. Нуклеиновые кислоты несут всю генетическую информацию, которая заложена в последовательности четырех различ ных нуклеотидных оснований. Существуют нуклеиновые кислоты двух типов. Более стабильная дезоксирибонуклеиновая кислота (ДНК) является хранителем информации. Менее стабильная рибонуклеиновая кислота (РНК), транскрибирующаяся с ДНК, выполняет роль матрицы, которая транслирует нуклеотидный текст в аминокислотные последовательности белков с помощью рибосомного механизма. Белки участвуют фактически во всех типах деятельности организма. [c.9]

    Изучение пространственных моделей и построение математических моделей позволяют предположить существование таких свойств упорядоченных конформаций углеводных цепей, по которым они отличаются от конформаций других важных биополимеров— белков и нуклеиновых кислот. Во-первых, углеводные цепи значительно жестче и, следовательно, число форм, которые может принимать полисахаридная цепь, более ограничено из-за пространственных запретов. Расчет по методу твердых сфер для цепей, в которых последовательно соединенные остатки разделены двумя связями, показывает, что обычно реализуется лишь 5 % возможных конформаций цепи [18]. Во-вторых, изменение последовательности углеводных остатков в полисахаридной цепи может приводить к гораздо более начительному изменению стереохимии молекулы, чем изменени порядка расположения аминокислотных или нуклеотидных остатков, поскольку в случае полипептидов или полинуклеотидов происходит перестройка лишь боковых цепей при сохранении структуры основной цепи, тогда как в полисахаридах изменение конфигурации или положения гликозидной связи ведет к существенным изменениям именно в основной цепи. В-третьих, углеводные цепи часто имеют разветвленную структуру с различным типом связей в точках ветвления, и взаимодействие [c.285]

    В выяснении первичной структуры РНК решающую роль сыграли методы ступенчатого гидролиза, осуществленного в основном экзонуклеа-зами и заключающегося в последовательном отщеплении по одному мононуклеотиду с одного конца молекулы нуклеиновой кислоты. Ниже представлена первичная структура первой РНК, имеющей 77 нуклеотидов, для которой была расшифрована нуклеотидная последовательность в 1965 г. Р. Холли и сотр., а именно аланиновой тРНК  [c.106]

    Химическая структура нуклеиновых кислот будет описана в 2.3. Здесь же уместно кратко описать основные принципы, заложенные в структуре молекулы ДНК, которые обеспечивают возможность самокопирования ДНК независимо от нуклеотидной последовательности. При делении клетки информацию, заложенную в молекулах ДНК этой клетки в виде определенной последовательности нуклеотидов, необходимо передать двум вновь образованным дочерним клеткам. Поэтому из одной молекулы ДНК перед клеточным делением должно образоваться две с той же нуклеотидной последовательностью. В живых организмах ДНК в период между ее удвоением всегда существует в виде двух связанных друг с другом полинуклеотидных цепей (нитей). Связь эта осуществляется в результате того, что каждый из четырех составляющи. ДНК типов нуклеотидов резко предпочтительно взаимодействует с одним из тре.ч остальных. Поэтому нуклеотидные последовательности этих нитей взаимно однозначно соответствуют друг другу, или, как принято говорить, комплементарны друг другу. Следовательно, каждая цепь содержит информацию о комплементарной нуклеотидной последовательности другой цепи. Будучи разделенными, цепи со.чраняют необходимую информацию для построения из нуклеотидов новы.к комплементарны. цепей и, таким образом, осуществляют воспроизведение информации, заложенной в двуспиральной структуре. Процесс самоудвоения ДНК, т.е. образования двух новых двуни-тиевых молекул ДНК, идентичных первоначальной молекуле, называют репликацией ДНК. Химические события, лежащие в процессе репликации, состоят в последовательном присоединении нуклеотидов друг к другу. Этот процесс в живых организмах осуществляет специальный фермент — ДНК-полимераза. Изучение свойств и механизмов функционирования этого фермента в клетке показало, что он работает только в присутствии материнской двуспиральной ДНК. Цепи материнской ДНК направляют образование новых комплементарных цепей, т.е. на каждой стадии роста новой цепи осуществляют отбор одного из четырех мономеров и присоединения его к растущей цепи. [c.18]

    Хотя нуклеиновые кислоты содержат всего четыре типа мономерных звеньев, множество мыслимых нуклеотидных последовательностей превосходит таковое для белков вследствие существенно большей длины полинуклеотидных цепей. Так, сравнительно небольшая ДНК митохондрий представляет собой две по-линуклеотидньге цепи, каждая из которых содержит до нескольких десятков тысяч связанных между собой нуклеотидов. В хромосоме Е.соИ число нуклеотидов в каждой из двух полинуклеотидных цепей составляет около четырех миллионов. [c.53]

    Главным отличием биосинтеза белков и нуклеиновых кислот от других биохимических превращений является участие в каждом акте удлинения синтезируемой цепи полимера наряду с соответствующим ферментом и субстратами (растущей полимерной цепью и очередным, присоединяемым мономером) специальной молекулы нуклеиновой кислоты, с помопц>ю которой в этом акте отбирается один из альтернативных мономеров. Эта нуклеиновая кислота может рассматриваться как линейная последовательность кодирующих элементов, которыми в случае биосинтеза ДНК и РНК являются отдельные нуклеотидные звенья, а в случае биосинтеза белка — тринуклеотиды, кодоны информационной РНК. [c.162]

    Ферменты, катализирующие матричный синтез нуклеиновых кислот, называются ДНК- или РНК-полимеразами. В некоторых случаях цепь мРНК может служить матрицей не только для синтеза белка, но и для синтеза ДНК. Этот процесс катализируется ферментом обратной транскриптазой. Каждый из трех синтезов биополимеров включает в себя три этапа инициацию — начало образования полимера из двух мономеров, элонгацию — наращивание полимерной цепи и терминацию — прекращение матричного синтеза. Механизмы синтеза ДНК одинаковы для прокариот и для эукариот. В их основе заложены принципы комплементарности азотистьгх оснований (А=Т и Г=Ц), обеспечивающие строгое соответствие нуклеотидной последовательности родительской и дочерней цепей ДНК. [c.450]

    Различные олиго- и полинуклеотиды отличаются друг от друга содержанием нуклеотидов каждого типа. Выраженные в процентах относительные количества мономерных 1веньев называют нуклеотидным составом, а их последовательность— первичной структурой нуклеиновой кислоты. [c.306]

    В заключение раздела, посвящеииого анализу последовательности нуклеиновых кислот, следует отметить, что новые методы обеспечили возможность полностью расшифровать строение ряда простейших геномов, к которым относятся бактериофаги < Х174 (5255 звеньев), С-4 (5577 звеньев), Т7 (39 936п.о.),>. (4 592 п. о.), некоторых других фагов и вируса обезьян 8У-40 (5226 л. о.), больших участков генома бактерий, животных, растений и т. п. Эта результаты заставили по-новому взглянуть на структуру и функцию генома и на его эволюцию. И тем не менее сегодня в середине 80-х годов расшифрована еще только очень незначительная часть генетической информации. Общая длина расшифрованных последовательностей составляет всего лишь несколько миллионов нуклеотидных звеньев, а это — только 0,001 длины генома человека. [c.330]

    Однако наиболее широкое применение находят сравнительно короткие олигонуклеотиды. Для того чтобы придать фрагменту нуклеиновой кислоты необходимые для встраивания в определенный участок векторной молекулы липкие концы, синтезируются так называемые линкеры, т. е. двухцепочечные олигонуклеотиды, содержащие последовательность, расщепляемую той или иной рестрикционной эндонуклеазой. Обычно в качестве линкеров применяются самокомплементарные олигонуклеотиды длиной 8—10 нуклеотидных звеньев. На рисунке 213 демонстрируются некоторые типы линкеров. [c.377]

    Экспресс-диагностика. В качестве экспресс-диагностики используются молекулярно-биологические методы выявление в клинических образцах нуклеиновых кислот возбудителя с помощью ПЦР и метод гибридизации на основе ДНК-зондов. Разработана мультиплексная ПЦР, позволяющая одновременно определять в клинических образцах нуклеотидные последовательности М. genitalium, и. urealyti um и М. hominis. Однако в связи с высокой частотой носительства полученные результаты требуют подтверждения методами серодиагностики. [c.252]

    ТРАНС-ИЗОМЕРЫ, см. Геометрическая изомерия. ТРАНСКРИПЦИЯ, перенос генетич. информации, с помощью к-рого нуклеотидная последовательность ДНК определяет порядок расположения нуклеотидов в РНК. Осуществляется путем матричного синтеза РНК, последовательность рибонуклеотидов в к-рой комплементарна (см. Нуклеиновые кислоты) последовательности дезоксирибо-нуклеотидов в одной из двух цепей ДНК и гомологична (подобна) их последовательности во второй цепи ДНК. Синтезируется РНК с помощью фермента РНК-полимера-зы из рибонуклеозид-5 -трифосфатов последоват. наращиванием цепи РНК в направлении от 5 - к З -концу. Известна также обратная Т. (синтез ДНК на матрице РНК) — один из этапов репликации РНК-содержащих вирусов. Осуществляется фермеетом РНК-зависимой ДНК-полимеразой (обратная транскриптаза). За открытие обратной Т. Д. Балтимор и X. Темин в 1975 удостоены Нобелевской премии. ТРАНСЛЯЦИЯ, процесс, с помощью к-рого нуклеотидная последовательность матричной РНК (мРНК) определяет расположение аминокислот в синтезируемом белке. Заключит. стадия реализации генетич. кода — перевод 4-буквен- [c.587]

    Межнуклеотидные связи в ДНК и РНК можно химически расщепить с помощью гидролиза. Их можно гидролизовать и ферментами, которые называются ну-клеазами. Некоторые нуклеазы способны расщеплять связи между двумя соседними нуклеотидами, расположенными внутри цепи ДНК или РНК такие нуклеазы называют эндонуклеазами. Нуклеазы другого класса могут катализировать гидролиз только связи концевого нуклеотида-или у 5 - или у 3 -конца молекулы эти ферменты относятся к экзонуклеазам. Дезоксирибонуклеазы, специфически расщепляющие определенные межнуклеотидные связи в ДНК, и рибонуклеазы ферменты, специфичные к РНК, найдены во всех живых клетках. Они секретируются, в частности, поджелудочной железой в кишечный тракт, где принимают участие в гидролизе нуклеиновых кислот в процессе пищеварения. Ниже мь1 увидим, что различные типы эндонуклеаз представляют собой важный биохимический инструмент для контролируемого расщепления ДНК и РНК на меньшие фрагменты при определении их нуклеотидной последовательности. [c.857]


Смотреть страницы где упоминается термин Нуклеиновые кислоты нуклеотидные последовательности: [c.623]    [c.520]    [c.287]    [c.118]    [c.264]    [c.587]    [c.265]    [c.55]    [c.262]    [c.518]    [c.50]    [c.89]    [c.69]    [c.260]    [c.341]    [c.162]    [c.864]    [c.885]   
Химия и биология вирусов (1972) -- [ c.102 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты



© 2025 chem21.info Реклама на сайте