Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рекомбинация радикалов при радикальной полимеризации

    Вычислите отношения массовой и числовой долей 250-мера в продукте радикальной полимеризации при обрыве диспропорционированием и рекомбинацией (и отсутствии передачи цепи), если вероятность того, что растущий радикал продолжает расти, составляет 0,996. [c.55]

    Димерный ион-радикал является одновременно карбанионом и радикалом и может участвовать как в анионной, так и в радикальной полимеризации. В результате рекомбинации ион-радикалов образуются дианионы  [c.94]


    В качестве инициаторов этой реакции используют соединения, генерирующие свободные радикалы. Присоединение свободного радикала к молекуле ненасыщенного мономера дает новый свободный радикал, который в свою очередь присоединяется к следующей молекуле мономера, образуя еще более крупный свободный радикал, и т. д. Обрыв цепи происходит при рекомбинации или диспропорционировании двух радикалов. В процесс цепной радикальной полимеризации входят реакции инициирования (схемы 1, 2), роста цепи (схемы 3, 4) и обрыва цепи (схема 5). Для реакций цепной полимеризации обычно характерны следующие особенности, отличающие их от процессов ступенчатой полимеризации (а) рост цепи происходит путем быстрого присоединения молекул мономера к небольшому числу активных центров (б) скорость полимеризации очень быстро достигает максимального значения и затем остается более или менее постоянной до тех пор, пока не будет израсходован весь инициатор (в) концентрация мономера равномерно у-меньшается (г) даже при низкой степени конверсии мономера в продуктах реакции содержатся полимеры с высокой молекулярной массой. [c.301]

    Предложена схема радикальной полимеризации с обрывом цепей при рекомбинации двух полимерных радикалов, полимерного радикала с первичным или двух первичных [c.33]

    Протекание радикальной полимеризации в данном случае, вероятно, возможно только благодаря относительно большой продолжительности жизни радикала, образующегося при переносе электрона. Это может быть обусловлено низкой концентрацией присутствующих радикалов пз-за малой скорости инициирования и, следовательно, низкой скоростью реакции обрыва, которая происходит либо путем рекомбинации радикалов, либо путем отрыва анион-радикалом второго электрона от лития. Указанный выше тип блоксополимеризации не наблюдается в случае натрия или других щелочных металлов, что согласуется с более низкой электроположительностью лития по сравнению с натрием . Отмечается также что изопрен при со- [c.274]

    Перекись грег-бутила является инициатором радикальной полимеризации. Степень полимеризации должна сильно зависеть от скорости обрыва цепей. В отсутствие растворителя обрыв цепи осуществляется, главным образом, путем рекомбинации и диспро-порционирования полимерных радикалов. В присутствии толуола возможен обрыв цепи в результате отрыва атома водорода полимерным радикалом с образованием молекулы полимера и бензильного радикала. Поскольку энергия диссоциации связи С—Н в толуоле невелика, такой процесс весьма вероятен и должен приводить к уменьшению степени полимеризации. Действительно, в этом случае степень полимеризации около 9000. [c.119]


    Скорость реакции инициирования (а) (образования радикала RI) обозначим Ши- Константы скоростей всех реакций роста цепи будем для простоты считать одинаковыми и равными Ар. Так как процесс радикальной полимеризации обычно протекает в газе под давлением или в жидкой фазе, преобладающим является квадратичный обрыв цепей. Обрыв цепей, как показано на схеме, может осуществляться двумя способами путем рекомбинации (г) и путем диспропорционирования свободных радикалов (д), когда происходит передача атома от одного свободного радикала к другому, приводящая к образованию двух валентно-насыщенных молекул. При этом у частицы, отдающей атом, возникает двойная связь. В реакции обрыва могут участвовать любые радикалы (которые могут быть и одинаковой длины). Константу скорости обрыва обозначим ко. [c.522]

    Скорость реакции инициирования (а) (образования радикала Кг) обозначим Ша. Константы скоростей всех реакций роста цепи будем для простоты считать одинаковыми и равными кр. Так как процесс радикальной полимеризации обычно протекает в газе под давлением или в жидкой фазе, преобладающим является квадратичный обрыв цепей. Обрыв цепей, как показано на схеме, молсет осуществляться двумя способами путем рекомбинации (г) и путем диспропорционирования свободных радикалов (д), когда происходит передача атома от одного свободного радикала к другому, [c.526]

    Рост макромолекул при радикальной полимеризации продолжается до тех пор, пока на конце растущей цепи сохраняется активный свободный радикал. Реакции обрыва цепи могут происходить вследствие изомеризации активного макрорадикала в неактивный, присоединения к активному макрорадикалу какой-либо примеси, что приводит к дезактивации радикала. Кроме этих процессов, к обрыву кинетической цепи приводят реакции рекомбинации и диспропорционирования свободных радикалов, в результате которых количество активных центров в системе убывает. [c.157]

    Некоторые комплексы щелочных металлов с ароматическими соединениями, например с нафталином и особенно с дифенилом, являются весьма активными и удобными для осуществления анионной полимеризации инициаторами, хорошо растворимыми в ТГФ и ДМЭ с образованием окрашенных растворов. При инициировании полимеризации такими инициаторами ароматический углеводород служит как бы передатчиком электрона мономеру. Образующиеся радикал-анионы мономера при рекомбинации создают дианионы, в присутствии которых полимеризация протекает с живущими полимерами с двумя активными центрами на концах цепи [80]. (Более подробно см. раздел Натрийорганические соединения , гл. 5.) Образование радикал-анионов наблюдалось также при проведении полимеризации ряда мономеров под влиянием электрического тока [141] и щелочных металлов. В присутствии щелочных металлов в углеводородных средах отмечалось протекание некоторой доли радикальных процессов [70, 91, 92, 99], В ряде работ предполагалось, что металлический литий обусловливает наряду с анионной полимеризацией в системе стирол — метилметакрилат одновременное протекание некоторой доли радикального процесса даже в присутствии ТГФ, т. е. в условиях, когда скорость анионного процесса весьма велика [91, 92, 99]. Овербергер и сотр. при исследовании аналогичной системы пришли к заключению, что с этим инициатором в присутствии ТГФ имеет место только анионная полимеризация, а наблюдаемые особенности обусловлены избирательной адсорбцией стирола на металлическом литии в начальной стадии реакции развития цепи [100]. / [c.368]

    При.радикальной цепной полимеризации присоединение радикала к двойной связи является элементарным актом инициирования реакции, а многократное последо нательное присоединение радикалов к двойным связям мономеров—суммой элементарных реакций роста. При рекомбинации или диспропорционировании растущих радикалов реакция их роста прекращается, т. е. происходит элементарный акт обрыва цепи. Кроме того, при реакциях переноса электрона возможен обрыв молекулярной цепи [c.13]

    Френкель С. Я., в кн. Энциклопедия полимеров, т. 2, М., 1974. С. Я. Френкель. МАКРОРАДИКЛЛЫ, макромолекулы, обладающие не-спаренным электроном на внеш. орбитали. Различают свободные (нейтральные) М. я заряженные (анион- в катион-радика.1ы). Образукгтся при разрыве хим. связей в основной и боковой цепях макромолекул под воздействием, напр., ионизирующих излучений, света, мех. напряжений, низкомол. радикалов, при радикальной полимеризации, взаимод. макромолекул со своб. радикалами, в процессах переноса электрона и т. п. М. вступают в р-ции присоединения, замещения, изомеризации, диспропорционирования, рекомбинации. Играют большую роль при окислении, старении, и модификации полимеров. [c.310]

    На эффективность инициатора рекомбинация первичных радикалов [уравнение (3.77)] не оказывает никакого влияния. Инициирование полимеризации онисывается уравнениями (3.79), (3.81) и (3.83). Эффективность инициатора уменьшается в результате протекания реакций (3.78), (3.84) и (3.85), так как продукты таких реакций — устойчивые соединения, которые не могут образовывать радикалы. При этом наибольшзе влияние на уменьшение / оказывает разложение радикала внутри клетки растворителя [уравнение (3.78)1. Очень наглядным в этом смысле является рассмотрение временных зависимостей различных реакций [4]. Среднее время жизни соседних радикалов составляет 10 —10 с. Поскольку константа скорости радикал-радикального взаимодействия равна 10 Л (моль-с) и выше, а концентрация радикалов в клетке растворителя достигает 10 М, то вероятность протекания реакции (3.78) достаточно велика. Реакция (3.79) не может конкурировать с реакцией (3.78), так как реакции присоединения радикалов идут со значительно более низкой скоростью [константа скорости таких реакций 10— 10 л/(моль-с)]. [c.180]


    Рекомбинация радикалов по механизму миграции свободной валентности, очевидно, происходит при радикальной полимеризации. Радикал начинает и замыкает полимерную цепь. Однако роль радикалов в известных процессах полимеризации в твердой фазе не была твердо установлена. Мы попытались выяснить роль радикалов при полимеризации ацетальдегида, протекающей по-карбонильной связи при низких температурах, как это было показано в работах [6, 7]. Спектр ЭПР радикалов, образую-)цихся при у-облучении твердого ацетальдегида, приведен на рис. 2. Он имеет 10 линий сверхтонкой структуры (СТС) (а). При облучении ультрафиолетовым светом этот спектр превращается в пятилинейный (б). Это дает основание считать, что-первоначальный спектр представляет собой наложение спектров не менее чем двух радикалов. Мы разложили исходный спектр па два спектра пятилинейный спектр с биномиальным распределением интенсивностей 1 4 6 4 1 и расщеплением 20 э и спектр также с пятью слабо разрешенными линиями СТС. Можно предположить, что в первичном процессе образуется радикал [c.217]

    Таким образом, наиболее вероятным механизмом радиационного инициирования радикальной полимеризации на поверхности твердых тел является рекомбинация избыточных носителей, возникающих в рещетке твердого тела при облучении, на поверхностных уровнях, образуемых адсорбированными мономерами, с передачей выделяющейся энергии рекомбинации молекулам мономера, приводящей к образованию радикалов. Первой стадией этого процесса является захват электрона или дырки адсорбированной молекулой с образованием соответствующего ион-радикала, который затем рекомбинирует с избыточным носителем противоположного знака. Передача энергии электронного возбуждения от решетки твердого тела к адсорбированным мономерам в виде экситонов, а также излучательным путем для тел диэлектрической природы, по-видимому, маловероятна. [c.69]

    Интересно отметить, что межцепной обмен при радикальной полимеризации по первому механизму в принципе может протекать, неограниченное время, поскольку число радикалов, погибающих при рекомбинации, равно числу радикалов, образующихся в результате самогенерации при деструкции макромолекул. Межцепной обмен, протекающий по второму механизму, сопровождается гибелью свободных радикалов в системе, поскольку в каждом акте рекомбинации расходуется два радикала, а в акте деструкции цепи новые радикалы не образуются. Поэтому процесс межцепного обмена в этом случае заканчивается тогда, когда израсходуется весь инициатор. [c.10]

    В начале XX в. химики открыли свободные радикалы как одну из активных форм химического вещества. Оми образуются из молекул путем отщепления отдельных атомов или групп и содержат атомы элементов в необычном для них валентном состоянии, например, радикал метил СНз или этил СНз — СНг с трехвалентным атомом углерода. Свободные радикалы характеризуются наличием одиночных (неспарепных) электронов, чем и объясняется их исключительная химическая активность, способность к рекомбинации. Свободные радикалы могут вызвать цепную реакцию в. молекулах, которые при других условиях являются устойчивыми. Оказалось, что многие процессы (окисление, крекинг, полимеризация непредельных соединений и т. д.) протекают как радикально цепные. [c.78]

    Аяализируя свои данные и результаты исследований Шленка [9], авторы пришли к заключению, что полимеризация под действием щелочных металлов протекает аналогичным образом. Первичное металлоорганическое соединение образуется путем присоединения натрия к ненасыщенной молекуле. Дальнейшими исследованиями было установлено, чт о образование металлоорганического соединения происходит через стадию образования анион-радикала в результате осуществления переноса электрона с щелочного металла на мономер с последующей рекомбинацией радикальных центров [10—15]. [c.518]


Смотреть страницы где упоминается термин Рекомбинация радикалов при радикальной полимеризации: [c.301]    [c.857]   
Высокомолекулярные соединения Издание 2 (1971) -- [ c.51 , c.53 ]




ПОИСК





Смотрите так же термины и статьи:

Радикал рекомбинация

Радикальная полимеризация

Рекомбинация



© 2025 chem21.info Реклама на сайте