Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеотидная ДНК и аминокислотная последовательность в белках

    Итак, информация для аминокислотной последовательности белков закодирована в виде нуклеотидной последовательности соответствующих матричных РНК. Триплетный кодон матрицы должен однозначно детерминировать определенную аминокислоту. Между тем, явного стерического соответствия структур аминокислот и соответствующих им кодонов не наблюдается, т. е. кодоны вроде бы никак не могут служить прямыми матричными поверхностями для аминокислот. Отсюда в 1955 г. Ф. Крик предложил свою адапторную гипотезу , где он постулировал существование специальных малых адапторных РНК и специальных ферментов, ковалентно присоединяющих аминокислотные остатки к этим РНК. Согласно гипотезе, каждой аминокислоте соответствует свой вид адапторной РНК и свой фермент, присоединяющий только данную аминокислоту к данному адаптеру. С другой стороны, адапторная РНК имеет нуклеотидный триплет (впоследствии названный антикодоном), комплементарный соответствующему кодону матричной РНК Таким образом, узнавание кодона аминокислотой не является непосредственным, а осуществляется через систему адапторная РНК — фермент специфический фермент узнает одновременно аминокислоту и определенную адапторную молекулу, так что они оказываются соединенными в свою очередь, адаптер (с навешенной аминокислотой) узнает определенный кодон матричной РНК, так что присоединенная аминокислота становится приписанной именно данному кодону. В дополнение к решению проблемы узнавания, предложенный механизм предполагал также энергетическое обеспечение полимеризации аминокислот за счет химических связей, образованных между аминокислотными остатками и адапторными молекулами. [c.28]


    Установление аминокислотной последовательности по соответствующей нуклеотидной последовательности. В первой строке показан сегмент аминокислотной последовательности белка оболочки вируса табачной мозаики, а в третьей — соответствующая последовательность РНК [И]. [c.19]

    Подводя итоги, отметим, что центральная догма молекулярной биологии, сформулированная Криком, позволяет четко определить структуру взаимоотношений между информационными макромолекулами в биологических системах. Наследственная информация, закодированная в ДНК, передается молекулам РНК и затем через стадию трансляции выражается в структуре белковых молекул. В определенных условиях, например при инфекции некоторыми вирусами, этот общий для всех клеток путь переноса информации может несколько видоизмениться. Так, при вирусной инфекции информация может передаваться от молекул родительской РНК к дочерним молекулам РНК или от молекул РНК к ДНК. Наследственная информация, закодированная в нуклеотидной последовательности, переводится в аминокислотные последовательности белков. По всей вероятности, этот этап переноса информации, включающий стадию трансляции, не является обратимым. Белковые молекулы представляют своего рода ловушку в потоке генетической информации. Эволюционное развитие этой системы должно было завершиться на заре истории возникновения жизни на Земле. Вопрос о том, как конкретно могла протекать эта эволюция, дает прекрасную почву для различного рода теорий и гипотез. К сожалению, проверка какой-либо из таких гипотез сопряжена с необычайными трудностями. [c.62]

    Необходимость в химическом синтезе нуклеотидной последовательности, кодирующей какой-то конкретный белок, может возникнуть тогда, когда клонирование соответствующего гена затруднено. При этом нуклеотидную последовательность гена находят из данных об аминокислотной последовательности белка. К химическому синтезу прибегают и тогда, когда кодоны, из которых состоит данный ген, плохо считываются организмом-хозяином, и уровень трансляции оказывается очень низким. В таком случае можно синтезировать ген с таким набором кодонов (оптимизация кодонов), при котором аминокислотная последовательность кодируемого белка остается прежней, а кодоны считываются хозяйским организмом более эффективно. [c.86]

    Используя эти способы определения белков А и В триптофансинтетазы, генетические методы (разрешающая способность рекомбинационного анализа, как мы знаем, соответствует отдельным нуклеотидным парам), а также метод отпечатков пальцев и определение аминокислотной последовательности белка А, Яновский и его сотрудники однозначно показали, что генетическая и полипептидная карты коллинеарны, т. е. что существует четкая корреляция между последовательностью нуклеотидов в некотором участке [c.497]


    Определение нуклеотидной последовательности ДНК может стать мощным методом определения аминокислотной последовательности белков. Генетический код является вырожденным в том смысле, что большая часть аминокислот описывается более чем одним кодоном. Поэтому нельзя установить нуклеотидную последовательность по коллинеарной аминокислотной последовательности. Однако удается извлечь информацию о неизвестной аминокислотной последовательности белка, анализируя исходную нуклеотидную последовательность. Реализация этого косвенного метода наталкивается на серьезное препятствие экспериментальные ошибки, отвечающие делециям н вставкам отдельных нуклеотидов в полинуклеотидной последовательности, настолько нарушают порядок нуклеотидных триплетов, что правильное определение аминокислот оказывается пока не возможным. [c.18]

    До сих пор не раскрыты в деталях молекулярные механизмы передачи генетической информации, закодированной в нуклеотидной последовательности ДНК. Различают три основных этапа реализации генетической информации. На первом этапе-этапе репликации происходит образование дочерних молекул ДНК, первичная структура которых идентична родительской ДНК (копирование ДНК). Репликация ДНК является ключевой функцией делящейся клетки и частью таких биологических процессов, как рекомбинация, транспозиция и репарация. На втором этапе, названном транскрипцией, генетическая информация, записанная в первичной структуре ДНК, переписывается в нуклеотидную последовательность РНК (синтез молекулы РНК на матрице ДНК). На третьем этапе-этапе трансляции генетическая информация, содержащаяся уже в нуклеотидной последовательности молекулы РНК, переводится в аминокислотную последовательность белка. Далее представлены основные итоги исследований и наши представления о биосинтезе полимерных молекул ДНК, РНК и белка, полученные к середине 1996 г. [c.478]

    Если специфический зонд отсутствует, то его можно синтезировать химическими методами, если известна полностью или частично аминокислотная последовательность белка — продукта интересующего нас гена. Конечно, определить точную нуклеотидную последовательность, исходя из аминокислотной последовательности, нельзя, поскольку каждая аминокислота может кодироваться разными триплетами (от 1 до 4). Однако зная аминокислотную последовательность, можно синтезировать набор зондов и идентифицировать с их помощью плазмиды с частично гомологичными последовательностями. [c.316]

    Ниже приведены нуклеотидные последовательности гена Е2 и аминокислотная последовательность белка шелка. (Последовательность между нуклеотидами 972 и 973 не пронумерована, поскольку она не является кодирующей и относится к нитрону.) [c.179]

    Можно ли точно узнать нуклеотидную последовательность ДНК Первые попытки определения нуклеотидной последовательности были повторением метода определения аминокислотной последовательности белков расщепление молекулы на мелкие фрагменты, выяснение нуклеотидного состава во фрагментах и (на основе данных о перекрывающихся фрагментах) восстановление полной последовательности. Однако в случае белков дело обстояло значительно проще. Наличие в белковой молекуле 20 аминокислот обусловливает большое разнообразие фрагментов, тогда как в состав молекулы ДНК входит всего четыре основания. Поэтому описанный метод можно было использовать только для очень коротких фрагментов нуклеиновых кислот. [c.49]

    Изменчивость белков отражает лишь часть всех различий в нуклеотидных последовательностях ДНК. Различия между синонимичными кодонами не меняют кодируемых аминокислот 90% ДНК или даже более не транслируется. В нетранслируемую часть ДНК входят так называемые интроны (последовательности между кодирующими участками ДНК, называемыми экзонами) и участки нуклеотидных последовательностей, отделяющие одни гены от других. Можно, следовательно, поставить вопрос о степени генетической изменчивости (различий в последовательности ДНК), не оказывающей влияние на аминокислотные последовательности белков (хотя большая часть такой дополнительной [c.100]

    Степень генетической дифференциации между видами можно оценить либо прямым путем, исследуя нуклеотидные последовательности генов, либо косвенным образом, определяя аминокислотные последовательности белков, кодируемых структурными генами. Существуют и некоторые другие методы, позволяющие оценить накопившиеся в процессе эволюции генетические изменения гибридизация ДНК, электрофорез, иммунологический анализ. [c.220]

    В ряде случаев как метод решения структурных задач следует предпочесть масс-спектрометрию. Например, для определения нуклеотидной последовательности участка ДНК, соответствующего определенному гену, потребуется затратить несравненно меньше усилий, если каким-либо методом определена частичная аминокислотная последовательность белка, первичную структуру которого он кодирует. Такая информация может быть получена в течение нескольких недель с использованием масс-спектрометрии. Масс-спектрометрия — идеальный метод быстрой оценки степени гомологичности родственных белков [4]. Кроме того, масс-спектрометрия — это и непревзойденный метод структурного анализа амидов и определения положения остатков триптофана в пептидной цепи. План эксперимента при определении аминокислотной последовательности с применением масс-спектрометрии можно описать следующим образом  [c.522]


    В настоящее время основную схему организации живой материи можно считать известной. Нуклеиновые кислоты несут всю генетическую информацию, которая заложена в последовательности четырех различ ных нуклеотидных оснований. Существуют нуклеиновые кислоты двух типов. Более стабильная дезоксирибонуклеиновая кислота (ДНК) является хранителем информации. Менее стабильная рибонуклеиновая кислота (РНК), транскрибирующаяся с ДНК, выполняет роль матрицы, которая транслирует нуклеотидный текст в аминокислотные последовательности белков с помощью рибосомного механизма. Белки участвуют фактически во всех типах деятельности организма. [c.9]

    Два больших открытия, сделанные в 1953 г., ознаменовали наступление новой эры в биохимии. В этом году Джеймс Д. Уотсон и Фрэнсис Крик в Кембридже (Англия) создали модель структуры ДНК (двойную спираль) и высказали предположение о структурной основе точной репликации ДНК. В этом предположении, по существу (хотя и не в явной форме), была выражена идея о том, что последовательность нуклеотидных звеньев ДНК содержит в себе закодированную генетическую информацию. В том же году Фредерик Сэнгер, работавший в Кембридже в той же лаборатории, расшифровал последовательность аминокислот в полипептидных цепях гормона инсулина. Это достижение само по себе имело большое значение, так как в течение долгого времени считалось, что определение аминокислотной последовательности полипептида представляет собой совершенно безнадежную по трудности задачу. Но, кроме того, результаты, полученные Сэнгером, практически одновременно с появлением гипотезы Уотсона-Крика, тоже наводили на мысль о существовании какой-то связи между нуклеотидной последовательностью ДНК и аминокислотной последовательностью белков. В следующее десятилети Ь эта идея привела к расшифровке всех содержащихся в ДНК и РНК нуклеотидных кодовых слов, которые однозначно определяют аминокислотную последовательность белковых молекул. [c.146]

    Возможность выделения этого фрагмента определялась тем, что при Ti-РНК-азном гидролизе цистрона белка оболочки фага R17 можно ожидать образования лишь небольшого числа длинноцепочечных олигонуклеотидов со специфической структурой. Это показано на рис. 8.3, представляющем аминокислотную последовательность белка оболочки (И еЬег, 1967) и соответствующую нуклеотидную последовательность, найденную на основании генетического кода (см. табл. 8.1), На рис. 8.3 Y обозначает пиримидин, [c.155]

    Физические и химические исследования бактериофага 2 показали, что его частица содержит одну одноцепочечную (некольцевую) молекулу РНК длиной около 3300 нуклеотидов. (Следовательно, РНК 2 несет примерно в два раза меньше генетической информации, чем РНК ВТМ.) Нуклеотидный состав РНК 12 следующий [А] = 0,23 [Г] = 0,26 [У] = = 0,26 и 1Ц] = 0,25. Белковая оболочка фага 2 представляет собой сферическую структуру из 180 одинаковых молекул белка, каждая из которых содержит 129 аминокислот. Анализ аминокислотной последовательности белка фага 12 и родственных ему фагов М52 (выделенного в Калифорнии) и 1г (выделенного в Германии) показал, что белок М52 отличается от белка 2.по 88.-й аминокислоте, белке фага 12 в этом мес е находится оста- [c.469]

    Больщинство изменений в аминокислотной последовательности белков обусловлено мутациями небольших участков генома, медленно накапливающимися с течением времени. Точковые мутации и небольшие вставки и делеции возникают случайно, по-видимому, с более или менее равной вероятностью во всех участках генома, за исключением горячих точек , где частота мутирования существенно выше. Многие мутации, изменяющие амино-Тсислотную последовательность, оказываются вредными и довольно быстро отбрасываются в ходе естественного отбора (скорость этого процесса зависит от степени повреждающего эффекта). Меньшее число мутаций оказывается полезным, но эти мутации могут распространиться в популяции и в конце концов вытеснить исходную нуклеотидную последовательность. Когда мутантный вариант гена вытесняет исходный, говорят, что мутация закрепилась в популяции. Очень спорный вопрос какая доля мутационных изменений в аминокислотной последовательности может оставаться нейтральной, т. е. не оказывать действия на функцию белка, и поэтому может накапливаться в результате случайного дрейфа и закрепления  [c.275]

    Концепция генетического кода очень важна, и из нее, в частности, вытекает представление о существовании системы передачи информации. Наследственная информация о структуре клеточных белков закодирована в нуклеотидной последовательности клеточной ДНК с помощью четырехбуквенного алфавита (этот термин является вполне адекватным, поскольку алфавит-это и есть набор символов, используемых для передачи информации). В аминокислотных последовательностях белков эта информация переписана с помощью 20-буквенного алфавита. Генетический код, по словам Крика, устанавливает связь между двумя великими полимерными языками-языком нуклеиновых кислот и языком белков . [c.34]

    После того как генетический код был полностью расшифрован, были разработаны методы определения нуклеотидных последовательностей ДНК и РНК, которые позволили окончательно убедиться в правильности расшифровки и универсальности кода. Определение первичной структуры природных мРНК, например мРНК куриного овальбумина (рис. 11.18), показало, что аминокислотную последовательность белка можно прочитать непосредственно по соответствующей нуклеотидной последовательности с помощью таблицы генетического кода. При этом было установлено, что терминаторные кодоны, об определении структуры которых рассказывалось в предыдущем разделе, действительно выступают в роли сигналов терминации трансляции. Более того, удалось получить представление о некоторых достаточно неожиданных способах, с помощью которых может осуществляться зашифровка генетической информации, а также ее выражение в ходе транскрипции и трансляции. [c.83]

    Во введении к своей монографии [1941] Кимура пишет Теория нейтральности утверждает, что большинство эволюционньк изменений на молекулярном уровне, выявляемых при сравнительном изучении аминокислотных последовательностей белков и нуклеотидных последовательностей ДНК, обусловлено не дарвиновским отбором, а случайным дрейфом селективно нейтральных или почти нейтральных мутаций. Эта теория не отрицает роли естественного отбора в определении направления адаптивной эволюции, однако она предполагает, что адаптивную природу имеет лишь незначительная часть эволюционньк изменений первичной структуры ДНК, тогда как громадное боль- [c.20]

    Процесс трансляции нуклеотидной последовательности ДНК в аминокислотные последовательности белков осуществляется с помощью сложнейшей биохимической машины. Структура основных составляющих этой машины также закодирована в ДНК в виде генов тРНК, рибосомных РНК, рибосомных белков и т.п. Эти гены так же, как и любые другие, подвержены мутациям, что дает генетикам возможность использовать такого рода мутации в качестве инструментов для непосредственного изучения механизма трансляции. Те мутации, которые вносят серьезные нарушения в процесс трансляции, без сомнения, должны быть летальными. Однако удается обнаружить и условно-летальные мутации, и такие мутации, которые лишь незначительно сказываются на общем ходе трансляции. Мутации этого типа довольно часто оказываются супрессирующими по отношению к каким-либо другим трансляционным мутациям. [c.91]

    На сегодняшний день оперонная теория получила весьма детальное экспериментальное подтверждение. Удалось выделить репрессор в чистом виде и показать, таким образом, что он действительно имеет белковую природу. Была определена аминокислотная последовательность белка-репрессора, которая, как оказалось, полностью совпадает с последовательностью, предсказанной на основании определения нуклеотидной последовательности гена I. Была также установлена нуклеотидная последовательность регуляторных участков /ас-оперона, промоторного и операторного (рис. 15.9), локализованы мутации в этих участках. Показано, что очищенный репрессор в отсутствие индуктора действительно связывается с изолированным операторным фрагментом ДНК. Репрессор также связывается с индуктором, при этом происходит аллостерическое изменение его пространственной структуры, приводящее к значительному ослаблению связи репрессора с операторной областью ДНК. [c.177]

    Усовершенствование техники секвенирования белка значительно повысило его скорость и чувствительность, позволяя анализировать минимальные количества образца. Например, в настоящее время последовательность из нескольких десятков аминокислот можно выяснить, имея в распоряжении всего несколько микрограммов белка - количество, извлекаемое из одной полосы ДСН-полиакриламидного геля. Это оказалось крайне важно для изучения многих минорных белков клетки, например, рецепторов стероидных или полипептидных гормонов. В настоящее время достаточно определить в белке 20 аминокислот, чтобы сконструировать ДНК-зонд, используемый для клонирования соответствующего гена (см. разд. 5.6.5) После вьшеления гена оставшаяся невыясненной часть аминокислотной последовательности белка может быть реконструирована по нуклеотидной последовательности согласно генетическому коду. Это можно считать значительным достижением, поскольку даже с полной автоматизацией определение полной первичной последовательности белка остается крайне сложной задачей. Так, например, если белок состоит из 100 аминокислот, их последовательность, если очень напряженно трудиться, можно установить за месяц. Но с удлинением цепи аминокислот сложности нарастают очень быстро, что не позволяет превратить процесс определения аминокислотной последовательности в рутинную методику. Учитывая то обстоятельство, что секвенирование ДНК - процедура более легкая и занимает меньше времени (см. ниже), в настоящее время последовательность аминокислот в большинстве белков, как правило, определяют по нуклеотидной последовательности соответствующих генов. [c.220]

    Геном хлоропластов не был первым полностью расшифрованным геномом органелл. Первым оказался митохондриальный геном человека относительно малые размеры сделали его особенно привлекательным объектом для молекулярных генетиков, вооруженных новейшей методикой секвенирования ДНК (см. разд. 4.6.6), и в 1981 г. была опубликована полная последовательность этого генома, состоящая из 16569 пар нуклеотидов. Сопоставляя ее с известными нуклеотидными последовательностями тРНК и частичными аминокислотными последовательностями белков, кодируемых генами митохондрий, удалось определить на кольцевой молекуле ДНК локализацию всех этих генов (рис. 7-70). По сравнению с геномами ядра, хлоропластов и бактерий митохондриальный геном человека имеет несколько поразительных особенностей  [c.490]

    Нам остается сделать вывод, что гены, важные для эволюции человека в течение периода, когда происходило преобразование его мозга, совершенно неизвестны. Поскольку большая часть ДНК человека не кодирует белков и либо вообще не нужна, либо участвует в регуляции генной активности (разд. 4.8), можно предположить, что соответствующие изменения локализованы именно в этой, не содержащей структурных генов ДНК [1993]. Такие изменения могли произойти в неэкспрессируемых участках ДНК, относительно которых постулируется, что они имеют регуляторные функции. Возможно, что нуклеотидные последовательности ДНК, несущественные для реализации функций структурных генов, необходимы для развития, и, следовательно, изменения таких последовательностей могли оказать особое влияние на преобразования функции мозга. Однако эта идея весьма спекулятивна и носит слишком общий характер. Чтобы сформулировать более конкретные гипотезы, необходимо больше знать о генетической детерминации эмбрионального развития и о генах, влияющих на межвидовую изменчивость поведенческих признаков (гл. 8). Даже если исключить из рассмотрения все фенотипические эффекты и ограничиться анализом таких известных генетических феноменов, как хромосомные перестройки, добавление или потеря материала хромосом, изменчивость сателлитной ДНК и аминокислотных последовательностей белков, все равно придется констатировать слабое понимание многих аспектов эволюционного процесса. Например, мы не знаем, как происходит фиксация хромосомных перестроек в популяциях. Идентичны ли механизмы их фиксации тем процессам, которые приводят к фиксации аминокислотных замен Какие элементарные события привели к образованию разных типов сателлитной [c.27]

    Генетические методы, столь успешно использованные при изучении митохондриального генома дрожжей, неприменимы в случае клеток человека. Однако благодаря своим относительно малым размерам наша митохондриальная ДНК-весьма подходящий объект для определения нуклеотидных последовательностей с помощью современной методики (разд. 4.5.4), и в 1981 г. была опубликована полная первичная структура молекулы этой ДНК, содержащей 16569 нуклеотидов. Сопоставляя эту структуру с уже известными нуклеотидными последовательностями митохондриальных тРНК и аминокислотными последовательностями белков, кодируемых митохондриальной ДНК, удалось определить локализацию многих генов в кольцевой молекуле ДНК из митохондрий человека (рис. 9-67). [c.62]

    Механизмы, позволяющие добиться подобных изменений, весьма разнообразны. Можно, например, модифицировать нуклеотидную последовательность ДНК, которая кодирует представляющий интерес белок, чтобы аминокислотная последовательность белка изменилась определенным образом. Можно ввести природный белок в биосенсор гак, чтобы его свойства изменились вследствие взаимодействия с другими компонентами прибора. Прежде чем рассмотреть природу изменений, которые могут быть полезны при модификации белков специально для биосенсорных приложений, целесообразно обсудить некоторые свойства белков, влияющих на их функционирование в биосенсоре. [c.100]


Смотреть страницы где упоминается термин Нуклеотидная ДНК и аминокислотная последовательность в белках: [c.227]    [c.620]    [c.109]    [c.520]    [c.468]    [c.80]    [c.854]    [c.952]    [c.88]    [c.287]    [c.8]    [c.203]    [c.259]    [c.330]    [c.491]    [c.96]    [c.96]    [c.70]    [c.208]   
Современная генетика Т.3 (1988) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислотные белках

Аминокислотные последовательности



© 2025 chem21.info Реклама на сайте