Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика тушения флуоресценции

    Успешно применяются люминесцентные измерения при изучении быстрых реакций электронно-возбужденных молекул. В результате протекания таких реакций интенсивность флуоресценции (люминесценции) исходного соединения уменьшается, происходит тушение флуоресценции. Эти реакции тушения конкурируют с дезактивацией возбужденных молекул по другим механизмам. Так как время затухания флуоресценции порядка 10- с, то флуоресцентные методы обычно применяют для изучения кинетики быстрых реакций возбужденных молекул, протекающих за время 10 °— 10- с. [c.49]


Рис. 34. Кинетика затухания флуоресценции в твердой фазе для статического тушения (а) и для тушения в результате туннельного переноса электрона (б) в системе нафталин — ССЦ в этаноле Рис. 34. Кинетика <a href="/info/361706">затухания флуоресценции</a> в <a href="/info/636">твердой фазе</a> для статического тушения (а) и для тушения в результате <a href="/info/360535">туннельного переноса электрона</a> (б) в <a href="/info/635664">системе нафталин</a> — ССЦ в этаноле
    Кинетика флуоресценции в твердой фазе. В твердой фазе в отсутствие индуктивно-резонансного переноса энергии должен осуществляться статический механизм тушения флуоресценции. Могут существовать два типа молекул свободные молекулы, рядом с которыми при замораживании раствора нет ни одной молекулы тушителя и молекулы, имеющие соседа-тушителя, нефлуоресцирующие, мгновенно гаснущие . Первый тип молекул сохраняет неизменное время жизни. Поэтому при тушении флуоресценции в твердой фазе часто уменьшается квантовый выход флуоресценции, а время затухания остается неизменным. [c.98]

    Динамическое тушение флуоресценции в твердой фазе (в спирте при 77 К) наблюдается, например, для нафталина и пирена в присутствии акцептора электронов — четыреххлористого углерода. На рис. 34 представлена кинетика затухания флуоресценции нафталина в присутствии четыреххлористого углерода. Форма кинетической кривой не зависит от температуры в пределах 77—140 К. Из уравнения (IV.58) можно получить параметры а и v, характеризующие туннельный перенос электрона. [c.98]

    Определение констант динамического и статического тушения флуоресценции. Для раздельного определения констант скорости взаимодействия возбужденных молекул флуорофора с тушителем (динамического тушения) и константы равновесия комплексоой-разования в основном состоянии (статического тушения) проводят измерения спектров и кинетики флуоресценции образцов с различными концентрациями тушителя (в том числе и в отсутствие туши- [c.115]

    НИИ зависимости кинетики интенсивности излучения (или квантового выхода) от концентрации излучающих и тушащих частиц. В этом разделе мы сначала ознакомимся с применением стационарных методов исследования тушения флуоресценции (или фосфоресценции), а затем дадим определение излучательного времени жизни люминесцирующего уровня, существенного при нестационарных условиях. [c.85]


    Б. Я. Свешников, УФН 46, № 3, 331 (1952). Тушение флуоресценции растворов посторонними веществами как метод исследования кинетики бимолекулярных реакций в растворе . [c.279]

    Флуоресценция пигментов и захват возбуждения в РЦ. Времена жизни и кинетика затухания флуоресценции дают важную информацию о функционировании фотосинтетического аппарата и, в частности, о тушении флуоресценции антенны реакционными центрами. [c.303]

    Определение констант тушения триплетных состояний. Изучение констант тушения триплетных состояний удобно проводить в вязких растворах. При температурах, близких к комнатной, могут быть использованы растворы 1-бромнафталина в глицерине или полиэтиленгликоле. При низких температурах выбор растворителя более широкий. В качестве тушителя применяют соединения с тяжелыми атомами, кислород, парамагнитные стабильные радикалы, доноры электронов или атомов водорода. Весьма удобным объектом исследования являются соли уранила, флуоресценция которых тушится аминами, спиртами, анионами галогенов и многими другими соединениями. Чтобы выяснить статический или динамический характер тушения, необходимо провести параллельное исследование кинетики и интенсивности фосфоресценции в одних и тех же растворах и определить константы тушения, представив данные в координатах Штерна — Фольмера <ро/ср—[Q] и to/t—[Q]. [c.115]

    В присутствии значительных концентраций тушителей наблюдается статическое тушение, приводящее к уменьшению квантового выхода фосфоресценции без изменения времени затухания (аналогично статическому тушению флуоресценции). Некоторые соединения, в особенности содержащие тяжелые атомы, способствующие ин-теркомбинационной конверсии, образуют комплексы с фосфоресцирующим соединением, приводя к изменению времени затухания фосфоресценции и иногда даже к увеличению квантового выхода фосфоресценции вследствие увеличения константы скорости испускания фосфоресценции в таких комплексах. При этом затухание фосфоресценции происходит неэкспоненциально. В простейшем случае кинетика затухания представляет собой сумму двух экспонент, одна из которых соответствует свободным молекулам М, а другая— комплексу (М-р). Соотношение вкладов этих двух экспонент зависит ие только от концентрации комплексообразователя, по также от продолл<ительности возбуждающего импульса, поскольку время достижения стационарного состояния при заданной интенсивности возбуждающего света для частиц с разным време- [c.99]

Рис. 4.10. Кинетика затухания флуоресценции в твердой фазе для статического тушения (а) и для тушения в результате туннельного переноса электрона (6) в системе нафталин — СС в этаноле при 77 К. Концентрация СС14 / — О М, — 2 М, 3 — 2,5 М 4 — 3 1Л. Сплошная кривая рассчитана для двухэкспоненциального затухания по уравнению (4.54), пунктирная кривая — по уравнению (4.66) Рис. 4.10. Кинетика <a href="/info/361706">затухания флуоресценции</a> в <a href="/info/636">твердой фазе</a> для статического тушения (а) и для тушения в результате <a href="/info/360535">туннельного переноса электрона</a> (6) в <a href="/info/635664">системе нафталин</a> — СС в этаноле при 77 К. Концентрация СС14 / — О М, — 2 М, 3 — 2,5 М 4 — 3 1Л. Сплошная <a href="/info/1572952">кривая рассчитана</a> для двухэкспоненциального затухания по уравнению (4.54), пунктирная кривая — по уравнению (4.66)
    Измеряют относительные квантовые выходы и кинетику затухания флуоресценции. Полученные результаты обрабатывают в соответствии с уравнениями (4.11) —(4.20). Находят то, кц и константу комплексообразования в соответствии с уравнением (4.20),. Используя значение кс, полученное из кинетики флуоресценции, значения Я = 7 А и коэффициенты диффузии /3 = 2-10 см /с (пирен и четыреххлористый углерод) или ) = 1,5-10 см /с (акридиний с диметилнафталином)) по уравнению (4.26) рассчитывают значения (фоАр)нест для тех же концентраций тушителя, что были использованы экспериментально. Найдя истинные значения (фо/ф)А с учетом нестационарных поправок, по уравнению (4.20) находят константу комплексообразования. Сравнивают относительные вклады каждого из трех процессов (динамического тушения, нестационарных эффектов и комплексообразования) в изменение кван тового выхода флуоресценции. [c.223]

    Как уже указывалось (стр. 347), изменение поглощения света при изменении давления (а также при изменении температуры) оказывает существенное влияние на ход фотохимической реакции. Недооценка роли этого фактора часто приводит к неправильным заключениям о кинетике фотохимических реакций, так же как и к неверным выводам о тушащем действии тех или иных газов. Так, наиример, на основании правильного учета изменения поглощения света в результате ударного уширения линий поглощения было показано [191], что обнаруженное Стюартом [1190] тушение [резонансной флуоресценции ртути гелием и аргоном, так же как и иаблюдавиюеся Маннкопфом [910,604] тушение резонансной флуоресценции натрия смесью гелня и неона, целиком обусловлено изменением поглоихения возбуждающего света и, следовательно, не имеет ничего общего с истииным тушением флуоресценции. [c.366]

    При использовании диффузионных констант скорости следует иметь в виду еще одно обстоятельство. Если возбужденные состояния системы первоначально заселяются при случайном распределении взаимодействующих молекул, то некоторые пары молекул окажутся расположенными близко друг к другу и быстро прореагируют. Следовательно, вначале измеряемая константа скорости будет высокой, а затем станет снижаться по мере того, как будут расходоваться такие тесно расположенные пары . Наконец, установится стационарное состояние, п котором скорость реакции будет уравновешиваться скоростью диффузии реагирующих частиц друг к другу. Диффузионная константа скорости [уравнение (80)] соответствует именно такому стационарному состоянию. В лсидких растворах для установления стационарного состояния может потребоваться значительное время, например 10 с. Поэтому использование диффузионной константы для быстрой бимолекулярной реакции не является строгим, если эта реакция конкурирует с быстрым процессом первого порядка (например, испусканием флуоресценции с константой скорости 10 С ). Математическую трактовку кинетики переходных процессов, в том числе тушения флуоресценции, можно найти в работе Нойеса [87]. [c.79]


    Представляется вероятным, что очень быстрые реакции рекомбина-ти ионов требуют очень низкой энергии активации. Несомненно, если бы скорость этих реакций можно было измерить, то оказалось бы, что она часто определяется диффузией ионов. Кроме этого примера, имеется еще два типа реакций, в которых диффузия играет существенную роль, а может быть и полностью определяет скорость реакции. Речь идет о некоторых случаях тушения флуоресценции в растворах (ср., однако, стр. 328) и о гетерогенных реакциях между твердым телом и жидкостью. Так как скорость диффузии связана с вязкостью, то кинетика этих процессов, зависящая от диффузии, должна зависеть и от вязкости среды. [c.388]

    Кинетика коагуляции и тушения флуоресценции настолько хороню описывается уравнением Смолуховского [уравнение (63) гл. ХХШ], что на первый взгляд кажется возможным вообще принять его в качестве стандартной формулы для числа столкновений в случае реакций второго порядка. После введения фактора Больцмана и числа Л ц/ЮОО константу скоростн реакций второго порядка можно было бы определять по уравнению [c.583]

    Блан, Камбу и де Лафон [166] сформулировали общую теорию кинетики тушения при ионизации в органических сцинтилляторах. Ими рассматривается ионизирующая частица, которая возбуждает ANq молекул в синглетное состояние в элементе Аг на своем пути в сцинтилляторе. ANo экситонов диффундируют радиально и либо дают флуоресценцию, либо исчезают при тушении. Уравнение, описывающее изменение плотности экситонов п г, t) в точке М на расстоянии г от трека в момент времени t, может быть записано в следующем виде  [c.176]

    Кинетика затухания флуоресценции триптофана в различных белках оказалась многоэкспонентной. Отсюда следует, что суш ествует набор разных по своим флуоресцентным свойствам конформеров белка и что время установления равновесия между ними больше времени жизни флуоресценции. Тушение флуоресценции за счет столкновений возбужденного хромофора с соседними группами происходит [c.269]

    На рис. 9 представлена кинетика тушения и возгорания флуоресценции суспензий окиси цинка в растворах при пасыщеппи их Ю1СЛородом и выдувании последнего азотом. Как видно из рисунка, действие кис- лорода в этих системах сильно отличается но величине. Это интересное явление под гежит дальнейшему исследованию,причем должны быть учтены [c.50]

    Определение компонентов нефотохимического тушения флуоресценции хлорофила осуществляют путём анализа кинетики релаксации максимального уровня флуоресценции (FJ, что требует периодических измерений в течении темновой адаптации. В тоже время, для определения и Dp, достаточно лишь однократного измерения FylF ) в конце темновой адаптации, что легко сделать даже во время полевых экспериментов, используя предварительно отобранные и выдержанные в темноте образцы. При этом нужно быть уверенным, что время темновой адаптации достаточно для полной релаксации обратимого компонента тепловой диссипации. [c.99]

    Измерение абсолютных концентраций при помощи метода резонансной флуоресценции тр( бует знания вероятности возбуждения изучаемых частиц, тушения их флуоресценции и радиационного времени жизни т. Измерение интенсивности резонансной флюоресценции нри известном т позволяет определить концентрацию возбужденных частиц, которая всегда значительно меньше концентра 1,ин мевозбужденных частиц. Нахождение же числа последних, представляюп1 пх основной интерес с точки зрения кинетики и механизма изучаемой реакции, требует донолиительпых исследований. В самом общем случае между концентрацией возбужденных п и невозбужденных п молекул данного вещества существует соотношение [c.25]

    HaoS. значение в химии имеет фотолюминесценция. Ее характеризуют спектрами поглощения и люминесценции, поляризацией Л., энергетич. выходом (отношение энергии, излучаемой телом в виде Л., к поглощенной энергии), квантовым выходом (отношение числа излученных квантов к числу поглощенных), кинетикой. Максимум спектра фотолюминесценции обычно сдвинут в длинноволновую область по отношению к максимуму спектра поглощения (закон Стокса). Спектры поглощения и флуоресценции приблизительно зеркально симметричны, если они изображены в шкале частот (прави-чо зеркальной симметрии). Квантовый выход фотолюминесценции постоянен, если длина волны возбуждающего света Хе меньше длины волны Л. Хф, и резко уменьшается при X. > X (закон Вавилова). Зависимость интенсивности фотолюминесценции I от времени t для свечения дискретных центров имеет вид /(i) = = 7оехр(—i/x), где/о — интенсивность возбуждающего света, г — время жизни частиц на возбужд. уровне. Для рекомбинац. Л. I(t) = /о/(1 -(- pi) , где р — константа, 1 < а < 2. При повышении т-ры, увеличении концентраций в-ва, изменении pH, наличии примесей (в т. ч. Оз) наблюдается уменьшение выхода Л.— тушение. Различают тушение без уменьшения и с уменьшением г — соотв. статическое и динамическое, или тушение 1-го и 2-го рода (см. Штерна — Фольмера уравнение). [c.306]


Смотреть страницы где упоминается термин Кинетика тушения флуоресценции: [c.195]    [c.587]    [c.60]    [c.205]    [c.122]    [c.124]    [c.156]    [c.33]    [c.65]    [c.387]    [c.333]    [c.251]    [c.65]    [c.91]    [c.91]    [c.186]    [c.211]   
Биофизическая химия Т.2 (1984) -- [ c.86 , c.97 ]




ПОИСК





Смотрите так же термины и статьи:

Тушение

Тушение флуоресценции

Флуоресценция



© 2025 chem21.info Реклама на сайте