Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлоропласт внешняя мембрана

    Еще один подход, позволяющий судить о транспортных продуктах фотосинтеза — изучение оттока различных соединений из изолированных хлоропластов в окружающую водную среду. Естественно, что в этом случае необходимым требованием является целостность внешней мембраны хлоропластов. Осуществление кинетических опытов позволяет судить о наиболее быстрых транспортных продуктах и об их превращении в другие соединения вне хлоропластов. [c.260]


    Внешняя мембрана оболочки хлоропластов. [c.119]

    Внешняя мембрана оболочки хлоропласта, по-видимому, гомологична внешней мембране митохондрий и бактерий. [c.13]

    Внешняя мембрана оболочки хлоропласта [c.16]

    Если обсуждать транспорт белков через мембраны, то здесь наиболее изучены две модели импорт в митохондрии (хлоропласты) белков, синтезируемых в цитозоле, и экспорт из бактериальной цитоплазмы белков, предназначающихся для периплазмы и внешней мембраны. [c.162]

    Мембраны, в которых локализованы ферменты дыхательной цепи и окислительного фосфорилирования, называют сопрягающими мембранами. Примерами таких мембран являются внутренняя мембрана митохондрий, клеточная мембрана аэробных бактерий с дыхательным типом энергетики, хроматофоры фотосинтезирующих бактерий и мембраны тилакоидов хлоропластов зеленых растений. Отличительным признаком сопрягающих мембран является их способность образовывать АТФ за счет энергии внешних ресурсов. [c.398]

    Клеточные мембраны играют важную роль по ряду причин. Они отделяют клеточное содержимое от внешней среды, регулируют обмен между клеткой и средой (поступление в клетку питательных веществ и удаление из нее отходов ) и делят клетки на отсеки, или компартменты, предназначенные для тех или иных метаболических путей, например для фотосинтеза или аэробного дыхания. Некоторые химические реакции, в частности световые реакции фотосинтеза в хлоропластах, протекают на самих мембранах. Здесь же на мембранах располагаются и рецепторные участки для распознавания гормонов, нейромедиаторов или других химических веществ, поступающих из окружающей среды или из других частей самого организма. Знакомство со всеми свойствами клеточных мембран необходимо для понимания того, как функционирует клетка. [c.182]

    Одно из самых значительных достижений рентгеноструктурного анализа белков последних лет, которое не может не повлиять на дальнейшее развитие биологии и становление ее новой области -молекулярной биологии клетки, состоит в начавшейся расшифровке трехмерных структур первых мембранных белков. Перед обсуждением полученных здесь результатов целесообразно кратко сообщить о том, что было известно об этих белках до исследования их с помощью рентгеновской дифракции. Если основные структурные особенности биологических мембран определяются молекулами липидного бислоя, то специфические функции мембран выполняются главным образом белками. Они ответственны за процессы превращения энергии, выступают в качестве рецепторов и ферментов, образуют каналы активного и пассивного транспорта молекул и ионов различных веществ через мембраны, охраняют организм от проникновения чужеродных антигенов и стимулируют иммунный ответ клеточного типа. В обычной плазматической мембране белок составляет около 50% ее массы. Однако в некоторых мембранах, например во внутренних мембранах митохондрий и хлоропластов, его содержание поднимается до 75%, а в других, например миелиновой мембране, снижается до 25%. Многие мембранные белки пронизывают липидный бислой насквозь и контактируют с водной средой по обеим сторонам мембраны. Молекулы этих белков, называемых трансмембранными, как и окружающие их молекулы липидов, обладают амфипатическими свойствами, поскольку содержат гидрофобные участки, взаимодействующие внутри бислоя с гидрофобными хвостами липидов, и гидрофильные участки, обращенные к воде с обеих сторон мембраны. Другая группа мембранных белков соприкасается с водой только с одной стороны бислоя [234, 235]. Одни из них погружены только во внешний или во внутренний слой мембраны, другие ассоциированы за счет невалентных взаимодействий с трансмембранными белками, третьи прикреплены к мембране с помощью ковалентно связанных с ними цепей жирных кислот, внедренных в липидный слой. [c.56]


    Системы, образующие А яН+ из внешних ресурсов, называются первичными генераторами, а системы, образующие электрохимический потенциал за счет внутренних ресурсов, — вторичными генераторами А яН+. К первичным генераторам А яН+ относятся мембраны фотосинтезирующих бактерий (которые преобразуют энергию света в A[.iH+ с помощью трех различных механизмов циклической редокс-цепи, нециклической редокс-цепи и с помощью бактериородопсина), компоненты электрон-транспортной цепи митохондрий, мембраны хлоропластов. [c.121]

    У растений фотофосфорилирование АДФ происходит на внешней стороне мембраны тилакоидов. Полученный АТФ используется преимущественно в строме хлоропласта при синтезе глюкозы. В этом процессе портеры не участвуют, а соотношение Н+/АТФ обычно принимается равным трем. Тем не менее обсуждается также и величина, равная двум. [c.138]

    Если осветить хлоропласты, подвергнутые осмотическому шоку, они захватывают протоны из окружающей среды, и pH тилакоидов снижается примерно на 3 единицы (разд. 5.14). В интактных хлоропластах строма становится более щелочной по сравнению с внешней средой. Сохранение относительно щелочных значений pH в строме (гл. 5.9) свидетельствует о том, что мембрана хлоропластов ие отличается большой проницаемостью для ионов ОН" или Н-1-. [c.245]

    Имеются сведения, что матричная (информационная) РНК по своему нуклеотидному составу отличается от цитоплазматической матричной РНК, однако это положение еще не может считаться окончательно доказанным. Конечно, было бы заманчивым объяснять специфичность белков хлоропластов тем, что внешняя мембрана их непроницаема для молекул информационной, РНК, синтезирующихся в ядре клетки, а вся матричная РНК хлоропластов синтезируется непосредственно в них. Это не означает, что набор и содержание белков в хлоропластах совершенно не контролируются ядром. Можно было себе представить, что за счет матричной РНК ядерного происхождения в цитоплазме синтезируются белки, которые затем могут проходить через внешнюю мембрану внутрь хлоропласта. Однако ведущий специалист в этой области австралийский ученый Р. Смайли считает, что последняя вероятность невелика и что одни молекулы информационной РНК, которые имеются в хлоропластах, синтезируются непосредственно в них, а другие — в ядре (фиг. 25). [c.67]

    У различных типов водоросл,ей наблюдается деление полностью сформировавщихся хроматофоров, происходящее при делении клеток. Процесс деления можно наблюдать и у хлоропластов высших растений. Поперек направления ламелл возникает перемычка, образовавшаяся из внутреннего слоя оболочки. Она разделяет хлоропласт на две части, образуя две дочерних пластиды. Внешняя мембрана оболочки удерживает делящееся содержимое хлоропласта до тех пор, пока процесс не закончится. [c.83]

    Биологические мембраны способны преобразовывать энергию в форму, необходимую клетке для осуществления метаболизма, механической работы, осмотических функций, выработки тепла для терморегуляции и ряда других энергетических процессов. Биомембраны, обладающие такими свойствами, называются энергопреобразующими. Они способны превращать химическую энергию или энергию квантов света в электрическую через формирование разности потенциалов (ДЧ ) и энергию разности концентрации веществ, содержащихся в разделенных мембраной растворах. К энергопреобразующим мембранам относятся следующие структуры клеток гетеротрофных животных внутренняя мембрана митохондрий, внутренняя (цитоплазматическая) мембрана бактерий, внешняя мембрана клеток эукариот, а также мембраны аутотрофов, способные преобразовывать энергию света, — мембрана бактериальных хроматофоров, тилакоидов хлоропластов и цианобактерий, вакуолярная мембрана (тонопласт) растений и грибов. [c.118]

    Коллодиевая пленка не может быть использована в опытах с интактными бактериями, митохондриями и хлоропластами, так как во всех этих случаях прямому контакту с внутренней мембраной мешает клеточная стенка или внешняя мембрана клетки (органеллы). Эта трудность, по-видимому, критична и для так называемого метода пэтча , когда микроэлектрод прикасается к исследуемой мембране, не прокалывая ее. [c.35]

    В какой мере функциональный аналог напоминает холинорецептор животных Сравнивая описанные физиологические ответы с участием холинорецептора у животных с данными, полученными на растительных клетках, можно отметить определенное сходство. Ацетилхолин и его агонисты вызывают в растениях изменения KVNa" проницаемости и деполяризацию плазмалеммы или внешней мембраны хлоропластов, это напоминает реакции с участием никотинового холинорецептора животных. [c.59]

    Согласно симбиотической теории происхождения пластид, хлоропласт - потомок цианобактерий, который был захвачен эукариотической клеткой путем эндоцитоза, что привело к своеобразному симбиозу двух ранее самостоятельных организмов. Есгественно, сенсорные способности хлоропласта должны проявшггься вн> и клетки подобно реактщи одноклеточного организма на внешний химический стимул. Это предположение согласуется со структурой пластиды хлоропласт окружен двойной мембраной (оболочкой). Внешняя мембрана хлоропласта малопроницаема к различным соединениям, и в нее встроены специальные транспортные белки. Между внешней и внутренней мембранами находится узкое межмембранное пространство. Внутренняя мембрана окру- [c.106]


    В работах лабораторий Либермана п Скулачева расположение дыхательной цепи определялось по ее способности образовывать мембранный потенциал. В среду вводились различные доноры и акцепторы электронов, не проникающие сквозь мембрану. Оказалось, что эти вещества взаимодействуют лишь с цитохромом с в митохондриях. Установлено, что транспорт протонов и (или) электронов по дыхательной цепи действительно происходит. В других экспериментах определена локализация компонентов в мембране митохондрий. На рис. 13.10 показано вероятное расположение цепн. Согласно хемиосмотической гипотезе, любая сопрягающая система должна создавать электрохимический потенциал понов Н ". Действительно, опыты с проникающими синтетическими ионами показали возникновение А1 5 в митохондриях, СМЧ, хлоропластах (см. гл. 14) и мембранах бактерий. В то же время теория Митчелла встречается с трудностями и вызывает возражения. Блюменфельд приводит аргументы, показывающие невозможность построения машины Митчелла в конденсированной фазе. В такой машине АТФ-синтетаза использует разность концентраций протонов в водной фазе по обе стороны мембраны для выполнения внешней работы. Это — энтропийная машина, получающая энергию из термостата в форме кинетической знергип протонов. Нротоны движутся преимущественно по градиенту концентраций и передают свои импульсы подвижным частям машины разность потенциалов А1 5 расходуется на создание [c.437]

    В зеленых растениях все световые стадии фотосинтеза и часть темновых стадий протекают в специальных органеллах — хлоропластах (рис. 102). Хлоропласты имеют близко примыкающие друг к другу внешнюю и внутреннюю мембраны, причем внутренняя мемб1)ана является гладкой, т.е. не содержит каких-либо впячиваний, аналогичных кристам митохондрий. Внутреннее содержимое хлоропласта состоит из строми, в которой происходят некоторые темновые стадии фотосинтеза, в том числе фиксация СО2, и специальных структур — тилако- [c.362]

    Внешние, или плазматические, мембраны многих клеток, а также мембраны ряда внутриклеточньк органелл, например митохондрий и хлоропластов, удалось вьщелить в свободном виде и изучить их молекулярный состав. Во всех мембранах имеются полярные липиды в количестве, составляющем в зависимости от типа мембраны от 20 до 80% ее массы, остальное приходится главным образом на долю белков. Так, в плазматических мембранах животньк клеток количество белков и липидов, как правило, примерно одинаково во внутренней митохондриальной мембране содержится около 80% белков и только 20% липидов, а в миелиновьк мембранах мозга, наоборот, около 80% липидов и только 20% белков. Липидная часть мембран представляет собой смесь [c.342]

    Еще в 1952 году было отмечено [282], что поверхность дисков, полученных из разрушенных хлоропластов, имеет гранулярную структуру. Гранулы казались слишком большими для того, чтобы их можно было счесть просто частицами металла, использованного для напыления (фото 1,8). Было высказано предположение, что эти гранулы представляют собой макромолекулы (диаметром около 7 нм), из которых состоят ламеллы, образующие диск [109]. На тонких срезах ламелл эти гранулы обнаружены не были. Парк и Пон [252, 253] выделили из разрушенных хлоропластов шпината фрагменты ламелл, способные осуществлять реакцию Хилла более эффективно, чем целые хлоропласты. Возможно, это следует объяснить отсутствием барьера проницаемости, который создает окружающая хлоропласт мембрана (фото X). На лиофилизированных и напыленных металлом препаратах хлоропластов можно видеть, что ламеллярные структуры, суммарная толщина которых равна 16 нм, состоят из двух слоев, причем максимальная толщина каждого слоя достигает 10 нм. Внутренняя поверхность этих двух слоев представляется более гранулярной, чем внешняя по-видимому, гранулы упакованы таким образом, что общая толщина уменьшается. Модель структуры хлоропласта, предложенная Парком и Поном [252], показана на фиг. 4. Позже исследователи пришли к выводу, что гранулы представляют собой сплющенные сфероиды [c.16]

    Большинство белков проникает в митохондрии и хлоропласты из цитозоля сходным образом. Этот механизм был наиболее хорошо изучен для митохондрий, особенно у дрожжей. Белок переносится в матрикс митохондрии через зоны слипания внешней и внутренней мембран. Для этого переноса требуется гидролиз АТР, а также электрохимический градиент на внутренней мембране. Транспортируемый белок разворачивается, когда пересекает мито хондриальные мембраны. В митохондрии или хлоропласты переносятся только те белки, которые содержат специфический сигнальный пептид. Этот сигнальный пептид обычно расположен на N-конце молекулы белка и отрезается после переноса ее внутрь органеллы. На втором этапе транспорта белок может переноситься во внутреннюю мембрану. Для этого он должен иметь еш,е гидрофобный сигнальный пептид этот пептид открывается после удаления первого сигнала. В случае хлоропластов для переноса белков из стромы в тилакоид также требуется второй сигнальный пептид. [c.34]

    Мембраны, в которых энергия внешних ресурсов превращается в энергию АТФ, получили название сопрягающих. К ним относятся внутренние мембраны митохондрий, тилакоидные мембраны хлоропластов, а также мембраны и хроматофоры некоторых бактерий. Сопрягающие мембраны содержат компоненты цепей переноса электронов и фос-форилирования, а также фосфолипиды. Соотношение белков и фосфолипидов, как правило, составляет 2 1, причем среди белков свыше 30 % составляют различные компоненты редокс-цепеи, а среди фосфолипидов присутствует кардиолипин и почти отсутствует холестерин. Толщина сопрягающих мембран в разных биологических объектах варьирует незначительно и обычно достигает 7,0—9,0 нм. [c.54]

    Показано, что изолированные вакуоли способны к электроген-ному поглощению ионов Н+, сопряженному с гидролизом АТФ. Транспорт Н+ и АТФазная активность подавляются уникальным набором ингибиторов, включающим нитрат, К-этилмалеимид, три-алкил-олово и высокие концентрации ДЦКД. Олигомицин и ДЦКД (ингибиторы митохондриальной Н+-АТФ-синтазы) в низких концентрациях не влияют на Н+-АТФазу тонопласта. Она не тормозится диэтилстильбэстролом, блокирующим Н+-АТФ-синтазу митохондрий и Н+-АТФ азу внешней клеточной мембраны растений и грибов не влияет на нее и ванадат. Ферменты митохондрий животных, хлоропластов и плазмалеммы, способные расщеплять АТФ, в отличие от АТФ-азы тонопласта не тормозятся нитратом. В то же время Н+-АТФ-синтаза растительных митохондрий чувствительна к нитрату. Н+-АТФаза тонопластов была выделена и встроена в протеолипосомы. [c.125]

    Недавно группами Н. Нойперта и Г. Шаца (1987) была продемонстрирована необходимость не только А ф, но и АТФ для транспорта митохондриальных белков. По-видимому, АТФ требуется для разворачивания глобулы белка, подлежащего транспорту. Импорт белков в хлоропласты нуждается в АТФ, а не в А[гН. При этом АТФ расщепляется на внешней стороне мембраны оболочки хлоро пласта. [c.168]

    Клетки бактерий устроены проще. Обычно они имеют только две мембраны — внешнюю и внууреннюю. Бактерия — это как бы мешок в мешке, а точнее, очень мелкий пузырек с двойной стенкой. Здесь нет ни ядра, ни митохондрий, ни хлоропластов. [c.13]

    Ядерно-цитоплазменные отношения сводятся к взаимозависимому контролю синтеза важнейших функционально активных биополимеров. Так, малые белковые субъединицы рибулозо-1,5-дифосфат-карбоксилазы, при посредстве которой осуществляется важнейший процесс акцептирования СО2 в растительной клетке (см. с. 360), синтезируются в цитоплазме, а большие субъединицы—в хлоропластах. Биосинтез первых контролируется, следовательно, ядерным аппаратом клетки, вторых—хлоропластным геномом, локализованным в цитоплазме. В целом, из 800—1000 белков, необходимых для функционирования хлоропластов, лишь около 15% кодируется геномом этих клеточных органелл. Кроме рибулозо-1,5-дифосфат-карбоксилазы, при участии двух генетических систем растительной клетки (ядерной и хлоропластной) формируются тилакоидные мембраны, АТФазный и РНК-полимеразный комплексы хлоропластов. Аналогичный ядерно-цитоплазматический контроль характерен также для синтеза белковых субъединиц таких важнейших каталитически активных систем, как протонная АТФаза и цитохромоксидаза, белков внутренней и внешней мембран митохондрий, белков хлоропластных и митохондриальных рибосом и т. п. Таким образом, только при согласованной деятельности генома ядра и геномов митохондрий, хлоропластов и других субклеточных структур, при согласованной работе белоксинтезируюхцих систем [c.477]

    ДИСТОГО пучка двумя концентрическими слоями. Внутренний слой называют клетками обкладки сосудистого пучка, внешний слой — клетками мезофилла. В этих хлоропластах есть также система мембран, расположенных в периферической строме — периферический ретикулум, или сеть, которая соединяет мембраны тилакоидов и оболочку хлоропласта. Хлоропласты двух типов можно разделить, осторожно измельчая ткани и проводя центри- [c.50]

    Пути внутриклеточной трансдукции химического сигнала. Основная роль приемника экзогенных сигналов и его распространения принадлежит плазмалемме, которая регулирует обмен веществ между клеткой и средой. Она щрает и роль посредника между внеклеточным окружением и клеточными органеллами. Считают, что большинство клеточных мембран, в 10м числе мембран митохондрий и хлоропластов, эволю-ционно произошли от плазмалеммы. Поэтому полагают, что существуют общие принципы химической сигнализации между юхетками и органеллами внутри клетки. Получив внешний сигнал, плазмалемма передает импульс возбуждения к мембранам отдельных органелл через химические посредники, возможно, ана)югично тому, как это происходит в межклеточных синапсах животных клеток правда, пока неизвестно, есть ли внутри клетки между органеллами контакты, подобные синаптическим. В качестве сигнальных веществ в животных клетках функционируют ацетилхолин, катехоламины, аминокислоты и другие соединения. Вступая во взаимодействие с клеточными мембранами, химические агенты передают информацию, сигнализируют об изменениях во внешней среде. Воспринимают сигналы мембраны различных органелл - ядер, митохондрий, а у растений и хлоропластов. [c.106]

    Несмотря на эти черты сходства между митохондриями и хлоропластами, последние устроены таким образом, что происходящие в них процессы Пфеноса электронов и протонов более доступны для изучения, чем в митохондриях. Разрушив внутреннюю и наружную мембраны хлоропластов, можно выделить неповрежденные тилакоидные диски. Они сходны с суб митохондриальными частицами компоненты электронтранспортной цепи, использующие NADP"", ADP и фосфат, тоже расположены здесь с внешней стороны мембраны. Однако тилакоиды представляют собой интактные естественные структуры и потому гораздо более активны, чем суб митохондриальные частицы, получаемые из митохондрий искусственным путем. Поэтому некоторые из экспериментов, впфвые доказавших ключевую роль хемиосмотического механизма, были проведены на хлоропластах, а не на митохондриях. [c.476]


Смотреть страницы где упоминается термин Хлоропласт внешняя мембрана: [c.134]    [c.261]    [c.35]    [c.121]    [c.29]    [c.177]    [c.29]    [c.122]    [c.135]    [c.476]    [c.101]    [c.57]    [c.46]    [c.335]    [c.245]    [c.373]   
Биохимия мембран Биоэнергетика Мембранные преобразователи энергии (1989) -- [ c.13 , c.124 , c.160 ]




ПОИСК





Смотрите так же термины и статьи:

Хлоропласт



© 2025 chem21.info Реклама на сайте