Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сахара транспорт ферменты

    По мнению Анисимова, стимулирующее действие на отток ассимилятов азотных удобрений объясняется в основном усилением ростовых процессов, требующим притока значительных количеств строительного материала. Калий участвует в транспорте ассимилятов в качестве переносчика, образуя комплексное соединение с аминокислотами, а фосфор (фосфат) — с сахарами. В опытах с азотом и фосфатным удобрением наблюдалось усиление дыхания проводящих пучков, активация в них ферментов гексокиназы и альдолазы, принимающих участие в процессе гликолиза, а также повышение содержания макроэргических адениновых нуклеотидов. Все это тоже могло оказать влияние на интенсивность передвижения транспортных продуктов фотосинтеза. [c.273]


    Наличие активных ферментов гликолиза и макроэргических соединений указывает на интенсивно идущие в проводящих тканях процессы обмена веществ. Вопрос о непосредственном участии богатых энергией фосфорных соединений, а также гексозомонофосфатов в транспорте сахаров остается еще невыясненным. [c.254]

    Заканчивая описание регулирующих дыхание ферментных систем, необходимо упомянуть еще об одной группе катализаторов. Непосредственно не участвуя в окислении молекулы субстрата и транспорте электронов, эти ферменты выполняют, тем не менее, очень важную роль в предварительной подготовке дыхательного материала и, тем самым, в осуществлении клеткой функции дыхания. Напомним, что способность ферментов группы дегидрогеназ осуществлять первичное окисление дыхательного субстрата распространяется лишь на соединения с небольшой, относительно просто построенной молекулой (органические кислоты, спирты, простые сахара). Между тем, в качестве источника энергии клетка использует самые различные органические соединения, в том числе белки, сложные формы полисахаридов, жиры и др. Очевидно, этому должно предшествовать преобразование молекул полимеров, упрощение структуры молекулы и придание образующимся в ходе последнего продуктам химического строения, соответствующего специфике того или иного из окислительных ферментов. [c.238]

    Облегченная диффузия и активный транспорт во многом сходны. Оба процесса, по-видимому, осуществляются при участии специальных белков-переносчиков и для обоих характерна специфичность к ионам, сахарам и аминокислотам. Об этом свидетельствуют результаты анализа тех последствий, к которым приводят мутации в бактериальных и животных клетках (включая некоторые мутации, вызывающие заболевания у человека). Облегченная диффузия и активный транспорт напоминают реакцию между ферментом и субстратом, однако они осуществляются без образования ковалентных связей. На это сходство указывают следующие моменты 1) имеется специфический участок связывания для растворенного вещества 2) процесс переноса характеризуется насыщением, т. е. существует некая максимальная скорость транспорта (рис. 42.15) 3) процесс характеризуется определенной константой связывания, так что система в целом имеет свою Кул (рис. 42.15) 4) вещества, сходные по своей структуре с переносимым соединением, являются конкурентными ингибиторами и блокируют транспорт. [c.140]


    До сих пор мы говорили лишь об одном возможном механизме ионного транспорта, опосредованного переносчиками. Необходимо, однако, помнить о том, что суш,ествуют и многие другие способы переноса веш,еств через мембрану. На рис. 6.11 приведены некоторые важнейшие виды транспортных механизмов, обнаруженные в биологических мембранах. В левой части рисунка изображены простейшие способы переноса — пассивная диффузия ионов (1) и массовый поток жидкости (2). Далее следует пассивная диффузия, опосредованная переносчиком,— либо в одном направлении (3), либо в обоих (4). Весьма распространена такая пассивная диффузия, при которой перенос какого-либо вещества сопряжен с транспортом другого вещества так, во многих клетках осуществляется сопряженный перенос сахаров и аминокислот с Ма+ по градиенту концентрации этого иона (5). Наконец, существуют такие системы транспорта, для работы которых требуется энергия. К ним относятся насосы того типа, который мы только что рассмотрели (6) (источником энергии для работы таких насосов служат макроэргические фосфаты), и протонный насос (7), действующий во внутренней мембране митохондрий (см. гл. 4). Поставщиками энергии для работы протонного насоса служат дыхательные ферменты. Все эти механизмы действуют в биологических мембранах, но, кроме того, некоторые из них были воспроизведены и на искусственных мембранах, составленных из различных органических веществ. Это обстоятельство, открывающее широкие возможности для экспериментального анализа, свидетельствует о том, что особенности процессов переноса в значительной степени определяются свойствами органических молекул и макромолекулярных комплексов, образующих монослои или очень тонкие мембраны. [c.146]

    Вторичный активный транспорт ионов. Помимо ионных насосов, рассмотренных выше, известны сходные системы, в которых накопление веществ сопряжено не с гидролизом АТФ, а с работой окислительно-восстановительных ферментов или фотосинтезом. Транспорт веществ в этом случае является вторичным, опосредованным мембранным потенциалом и/или градиентом концентрации ионов при наличии в мембране специфических переносчиков. Такой механизм переноса получил название вторичного активного транспорта. Наиболее детально этот механизм рассмотрен Питером Митчелом (1966 г.) в хемиосмотической теории окислительного фосфорилирования. В плазматических и субклеточных мембранах живых клеток возможно одновременное функционирование первичного и вторичного активного транспорта. Примером может служить внутренняя мембрана митохондрий. Ингибирование АТФазы в ней не лишает частицу способности накапливать вещества за счет вторичного активного транспорта. Такой способ накопления особенно важен для тех метаболитов, насосы для которых отсутствуют (сахара, аминокислоты). [c.46]

    Мембранные гликолипиды участвуют в биосинтезе полисахаридов и транспорте сахаров. Тейхоевые кислоты, видимо, регулируют ионный обмен (связывают двухвалентные катионы, что необходимо для нормального функционирования ферментов, локализованных в мембране), действуют на связывание аминокислот с тРИК, осуществляют связь между мембраной и клеточной стенкой, проявляют антигенную активность. [c.391]

    Энергетический гомеостаз обеспечивает энергетические потребности различных тканей, используя при необходимости альтернативные виды топлива . Он включает транспорт различных субстратов в организме, а также реализацию механизмов, осуществляющих регуляцию уровня субстратов в крови. Эти механизмы обеспечивают непрерывную поставку тканям глюкозы между приемами пищи и при голодании. Различные причины, обычно связанные с недостаточной активностью того или иного фермента, приводят к гипогликемии (снижению содержания уровня сахара в крови). Патологические изменения эндокринной системы вызывают нарущение углеводного обмена. Так, недостаток инсулина приводит к сахарному диабету и гипергликемии. [c.212]

    Инсулину свойственны множественные эффекты стимуляция транспорта в кл етку сахаров, аминокислот, жирных кислот, ионов и предшественников нуклеиновых кислот, активация и ингибирование ферментов цитоплазмы, ретикулума и митохондрий, подавление протеолиза, ускорение белкового синтеза, изменение скоростей синтеза ДНК и РНК. [c.172]

    Инсулин является единственным гормоном, резко снижающим содержание сахара в крови. Его действие на углеводный обмен полифункционально. Основные механизмы регуляции связаны с повышением в присутствии инсулина проницаемости клеточных мембран для транспорта глюкозы внутрь клетки, а также опосредовано через активацию синтеза регуляторных ферментов катаболизма глюкозы — гексокиназы и фосфофруктокииазы, фермента синтеза гликогена — гликогенсинтазы (гл. 13). [c.283]


    Транслокация группы. При транспорте этого типа молекула химически модифицируется поглощается, например, сахар как таковой, а внутрь клетки он поступает в фосфорилированной форме. Фруктоза, глюкоза, маннитол и родственные вещества поглощаются с помощью фосфотрансферазной системы, зависимой от фосфоенолпирувата. Эта система состоит из неспецифического и специфического компонентов. Неспецифический компонент-это термостабильный белок, который при участии фермента I, находящегося в цитоплазме, фосфорилируется фосфоенолпируватом. Второй компонент-находящийся в мембране инду-цибельный фермент II, специфичный для того или иного сахара он катализирует перенос фрсфата с термостабильного белка (ТБ) на сахар во время транспорта последнего через мембрану  [c.260]

    Фермент в клетке связан с мембраной. Его активность высока, если система транспорта сахаров находится в фосфорилированной форме. Если же эта система затрачивает много энергии на транспорт сахаров (что связано с их фосфорилированием), активность аденилатциклазы снижается. [c.484]

    Академик А. Л. Курсанов, в лаборатории которого проводится большая работа по изучению транспорта ассимилятов по растению, пришел к выводу, что поглощение сахаров элементами флоэмы — активный процесс, требующий затраты энергии макроэргических связей АТФ. По-видимому, проникновение сахаров (гексоз) через, В1нешнюю мембрану клеток флоэмы сопряжено с фос-форилиров,анием гексоз с помощью фикси1рованиого на мембранах фермента гексокиназы, катализирующего реакцию  [c.268]

    Остановимся еще на энергетике активного транспорта. Мы уже упоминали о том, что энергия необходима для этого процесса, и его можно остановить, прекратив процессы дыхания и гликолиза в клетке. Во многих случаях, например при переносе аминокислот, а иногда и некоторых сахаров, можно прекратить активный перенос с помощью специфических ядов, отравляющих окислительное фосфорилирование, т. е. образование в клетке богатых энергией фосфатов типа АТФ. Типичный яд такого типа 2,4-динитрофенол ингибирует очень сильно перенос аминокислот внутрь большинства клеток. Поэтому АТФ и другие подобные соединения, вероятно, являются во многих (но не во всех) случаях теми донорами энергии В, которые нами рассматривались в общей схеме активного переноса. С этим связана также, по-види-мому, значительная аденозинтрифосфатазная активность, сосредоточенная в клеточных оболочках. Если АТФ расщепляется в процессе активного переноса метаболитов до АДФи ортофосфата, то мембрана должна содержать ферменты, действие которых эквивалентно АТФ-азе. Опыт подтверждает это предположение. АТФ-азная активность найдена была в оболочках самых разных клеток (бактерий, эритроцитов, асцитного рака). [c.182]

    Очень мало известно о механизме биологического действия гормонов, хотя, естественно, он будет различным у разных гормонов. Многие гормоны, в частности соединения пептиднобелковой природы, оказывают влияние на проницаемость клеточных и субклеточных мембран, по всей вероятности, путем воздействия на определенные ферменты. Таким путем они регулируют различные процессы в живой клетке. Интересно, что при этом гормон не обязательно должен входить в клетку, он может прикрепляться к определенной ферментной системе, расположенной на клеточной поверхности, и посредством кооперативных эффектов вызывать какие-либо изменения внутри клетки (такой механизм иногда называют кнопочным ). Таким путем может регулироваться транспорт ионов различных металлов и ряда веществ (например, сахаров) через мембраны и оболочки. [c.105]

    Подавляющее большинство биологически активных веществ (гормонов, нейромедиаторов, ядов, токсинов, лекарственных препаратов или любых других агентов) действует на функциональную или метаболическую активность клеток по одному из трех путей 1) изменение компартментализации веществ в клетке или в клеточном ансамбле 2) усиление или ослабление каталитической активности ферментов, что достигается чаще всего их модификацией 3) изменение концентрации ферментов в клетке путем воздействия на их синтез или деградацию (см. главу 1). Первый механизм регуляции осуществляется главным образом путем изменения проницаемости биологических мембран для нонов, коферментов или метаболитов. Потенциал действия, возникаю-" щий под влиянием ацетилхолина или катехоламинов (при связывании с а-адренергическими рецепторами), вызывается входом Са2+ и Ма+ и последующим выходом К+ из клетки. Поступление Са " " в клетку стимулируют также ангиотензин и простагландинь группы Р, а проницаемость мембран почек для Ыа+ и воды находится под контролем альдостерона и антидиуретического гормона. Транспорт в клетку сахаров и аминокислот усиливают инсулин и соматомедины. [c.160]

    Для того чтобы исследовать метаболизм углерода, транспорт метаболитов в хлоропластах и компартментацию ферментов в клетке (чему посвящена большая часть этой книги), необходимо прежде всего получить изолированные хлоропласты, которые при этом должны быть интактными, в достаточной степени очищенными от других субклеточных структур и биохимически активными. В некоторых случаях требуется очеиь высокая степень очистки хлоропластов (иапример, для установления локализации тех ферментов, которые присутствуют только в очень небольших количествах), поэтому может оказаться, что гораздо вал<иее освободиться от каких бы то ни было примесей н загрязнений, чем получить хлоропласты, способные осуществлять фотосинтез с очень высокой скоростью. При других обстоятельствах можно поступиться степенью очистки ради сохранения максимального уровня активности, ио наличие примеси цитоплазматических ферментов в препарате может очень усложнить интерпретацию полученных результатов (гл. 8). К тому же важно ие забывать два обстоятельства, которые часто упускают из виду, несмотря на то что это само собой разумеется. Во-первых, абсолютно невозможно получить хорошие хлоропласты из плохого исходного материала (см. разд. А.З). Во-вторых, хорошие хлоропласты будут работать хорошо только тогда, когда с ними будут правильно обращаться. Если оглянуться назад, то станет совершенно ясно, что после того, как в начале 60-х годов в практику были снова введены приемы Хилла, использовавшего в качестве осмотически активного вещества сахара, в плане улучшения методики выделения хлоропластов было сделано очеиь мало, если, конечно, ие считать предварительного получения протопластов (см. разд. А.5). Все последующие улучшения методики, способствующие получению более активных хлоропластов, касались главным образом методики определения активности, и в частности были связаны с введением в среду неорганического пирофосфата (разд. 8.14). [c.543]

    Некоторые белки, входяш ие в состав фос-фотрансферазной системы, обладают специфичностью, другие-нет. Так, НРг и фермент I, которые являются растворимыми белками цитозоля, участвуют в транспорте всех сахаров, переносимых этой системой. С другой стороны, ферменты II и III проявляют специфичность в отношении определенных сахаров. Например, в транспорте глюкозы, лактозы и фруктозы участвуют разные ферменты II и III. Такой же результат был получен и при генетических исследованиях. У мутантов, дефектных по НРг или ферменту I, не происходит транспорта большого числа разных сахаров, тогда как мутанты, дефектные по синтезу ферментов II и III, не способны транспортировать только какой-либо определенный сахар. Фермент III не участвует в транслокации гекситолов, в частности галактитола в этом [c.315]

    Для ряда транспортных систем непосредственным источником энергии служит не гидролиз АТР, а градиент концентрации ионов. Так, активный транспорт глюкозы и аминокислот в ряде животных клеток сопряжен с одновременным входом Ма такой процесс называется котранспортом. Одновременный вход Ка и глюкозы обеспечивается специфическим симпортом. (Ка + К )-насос создает тот фадиент концентрации ионов Ка, который необходим для сопряженного входа Ма и глюкозы. У бактерий, как правило, непосредственным источником энергии для симпортов и антипортов служит градиент концентрации Н, а не Ма. Например, активный транспорт лактозы, осуществляемый пермеазой для лактозы, сопряжен с входом протона в бактериальную клетку. Этот транспортный процесс протекает за счет протонодвижущей силы, генерируемой переносом электронов по дыхательной цепи. Бактериям свойствен и иной тип транспорта, а именно так называемая транслокация фупп в этом случае происходит модификация растворенного вещества в процессе переноса. Так, фосфотрансферазная система, переносящая сахара, фосфорилирует их (например, глюкозу в глюкозо-6-фосфат) по мере поступления в клетку. Донором фосфорильной Фуппы в этом процессе служит фосфоенолпируват. Фосфорилирование опосредовано тремя разными ферментами и небольшим белком (НРг) - переносчиком фосфорильной Фуппы. [c.324]


Смотреть страницы где упоминается термин Сахара транспорт ферменты: [c.254]    [c.137]    [c.247]    [c.137]    [c.44]    [c.44]    [c.108]    [c.173]    [c.85]   
Фотосинтез С3- и С4- растений Механизмы и регуляция (1986) -- [ c.566 ]




ПОИСК





Смотрите так же термины и статьи:

Сахара транспорт



© 2025 chem21.info Реклама на сайте