Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция дисперсионные силы

    Лондоновские дисперсионные силы являются чисто физическими по характеру взаимодействия и не предполагают образования каких-либо химических связей. Физическая адсорбция является результатом действия таких сил. Для них характерны сравнительно низкие значения энергии и достаточно быстрое установление равновесия. Оба этих следствия физической адсорбции позволяют осуществлять достаточно легко хроматографический процесс в равновесных условиях и разделять смеси различных веществ. На неполярных адсорбентах, например на графитированной саже, вся энергия адсорбции неполярных соединений, в частности, углеводородов, обусловлена дисперсионным взаимодействием. [c.69]


    Энергия адсорбции неполярных молекул на поверхности ионных решеток. Если адсорбент построен не из атомов, а из ионов, то к рассмотренным дисперсионным силам притяжения добавляются индукционные силы притяжения диполя, индуцированного в молекуле адсорбата электростатическим полем, создаваемым ионами решетки адсорбента. Доля индукционных сил в величине потенциальной энергии адсорбции пропорциональна поляризуемости молекулы адсорбата 2 и квадрату напряженности электростатического поля над поверхностью адсорбента  [c.493]

    При сужении пор адсорбционные силы сближающихся стенок пор складываются, причем потенциал дисперсионных сил всегда увеличивается. Это приводит к увеличению энергии адсорбции, в особенности для молекул с большой поляризуемостью, например больших по размерам молекул углеводородов и их производных. Энергия адсорбции паров гексана и бензола на силикагеле заметно увеличивается при сужении его пор до 50—40 Л- При адсорбции малых по размерам молекул, таких, как молекулы азота и метанола, энергия адсорбции заметно изменяется лишь при сужении пор до размеров, меньших 30 А. В случае адсорбции воды на силикагеле сужение пор до 25 А на энергии адсорбции практически еще не сказывается. [c.517]

    Характер активных центров на поверхности металла зависит от его химической природы, способа обработки и чистоты. Необходимо подчеркнуть, что химический состав поверхности играет существенную роль в протекании поверхностных процессов, и при рассмотрении конкретных вопросов химмотологии в области поверхностных явлений следует вносить поправки на особенности химического строения адсорбента. Химическое строение металла подробно рассматривается металловедением [203]. Поверхность металлических деталей представляет собой комбинацию полярных активных участков и олеофильных участков, природа которых определяется в основном дисперсионными силами. Адсорбция молекул некоторых углеводородов, индуцирующих на металле большие дипольные моменты, может способствовать превращению поверхности из неполярной в полярную [204]. [c.181]

    Поскольку при адсорбции дисперсионные силы действуют между атомом аргона и всеми атомами адсорбента, а не только с одним из них, адсорбционный потенциал Ф получается суммированием потенциала для взаимодействия атома аргона с каждым отдельным атомом углерода г по всем атомам углерода решетки графита  [c.488]

    Однако поскольку при адсорбции дисперсионные силы действуют одновременно между каждой неполярной частицей, например атомами аргона, и всеми близлежащими атомами адсорбента, суммарный потенциал Ф адсорбционных сил приближенно может быть получен суммированием потенциала парных взаимодействий атома аргона с каждым отдельным атомом адсорбента по всем его атомам с учетом потенциала сил отталкивания  [c.86]


    Простейшим случаем является адсорбция неполярной молекулы на неполярном же адсорбенте при этом действуют лишь электрокинетические (дисперсионные) силы притяжения и силы отталкивания. [c.487]

    Селективность адсорбента определяется в первую очередь силами взаимодействия адсорбента с поверхностью адсорбента. Это могут быть дисперсионные силы, действующие при адсорбции на неполярных адсорбентах. При взаимодействии вещества с поверхностью полярных адсорбентов существенную роль может играть образование водородной связи или же другие типы полярных взаимодействий. [c.54]

    При адсорбции больших молекул, обладающих, наряду с периферическими диполями, большой неполярной частью, например молекул спиртов с достаточно большой углеводородной цепью, молекул фенола и т. п., энергия дисперсионных сил больше энергии электростатического взаимодействия диполя адсорбата с полем ионов или полем диполей поверхности адсорбента. В результате молекула адсорбата, например фенола, ориентируется плоскостью бензольного кольца параллельно поверхности адсорбента. При такой вынужденной ориентации диполя молекулы адсорбата энергия электростатического взаимодействия меньше, чем при свободной его ориентации, так как ось диполя оказывается расположенной под углом к направлению электростатического поля поверхности. [c.496]

    В общем случае пептизация происходит под влиянием адсорбции дисперсионной среды или пептизаторов. Адсорбционные силы преодолевают более слабые силы сцепления между частицами, причем образующиеся адсорбционно-сольватные слои препятствуют коагуляции частицы. В результате пептизации гель может перейти в золь. [c.524]

    Упрощая, эту аддитивность можно объяснить как результат согласованного (в такт) движения электронных осцилляторов, которое понижает общую нулевую энергию системы. Аддитивность дисперсионных сил проявляется в адсорбции, в процессах, связанных с конденсацией газа и др. Дисперсионные силы играют большую роль при взаимодействии не только отдельных молекул, но и макроскопических частиц, например коллоидных. [c.134]

    При адсорбции происходит взаимодействие между атомом (молекулой) адсорбата с поверхностью адсорбента, т. е. с боль-11Г м числом атомов (молекул), из которых состоит адсорбент. Поэтому зависимость энергии притяжения при адсорбции от расстояния иная, чем описываемая по уравнению (III, 3). Это объясняется тем, что дисперсионные силы, вносящие основной вклад во взан-модействие, обладают свойством аддитивности. Поэтому если один [c.109]

    Как следует из сказанного выще, потенциальную кривую адсорбции легко построить, исходя из экспериментально полученной изотермы адсорбции. Предсказать ее можно, лишь зная распределение адсорбционного объема по адсорбционному потенциалу. Однако она, например, позволяет получить изотермы при любой температуре, зная изотерму при какой-либо одной температуре. Так как дисперсионные силы не зависят от температуры, то от температуры ие должна зависеть н форма потенциальной кривой адсорбции, что экспериментально подтверждается во многих случаях. Экспериментальные точки при разных температурах ложатся на одну и ту же кривую e=/(V), которую поэтому называют характеристической кривой (рис. П1. 13). Таким образом [c.141]

    Однако при численных расчетах энергий адсорбции чаще всего пользуются уравнением (7). При этом предполагается, что последние два члена в уравнении (II) компенсируются влиянием сил отталкивания (см. раздел IV, 4). Уравнение (7) выражает энергию взаимодействия между двумя атомами. Для того чтобы рассчитать энергию адсорбции, необходимо сначала вычислить энергии взаимодействия между адсорбированным атомом и каждым из атомов адсорбента, а затем полученные величины просуммировать. Это суммирование является законным, так как дисперсионные силы в первом приближении обладают аддитивными свойствами. Если вместо атома адсорбируется молекула, то суммирование должно быть распространено на все атомы, входящие в состав этой молекулы. В последнем случае иногда можно ожидать отклонений от [c.30]

    Вид изотерм расклинивающего давления смачивающих пленок определяется природой действующих поверхностных сил. В зависимости от свойств и состава жидкости, лиофильности и строения твердой подложки решающий вклад могут вносить различные составляющие расклинивающего давления. Только одна из них, а именно молекулярная составляющая Пт, проявляется во всех случаях, поскольку дисперсионные силы действуют между всеми молекулами. Другие составляющие могут оказывать влияние в большей или меньшей степени в зависимости от заряда поверхностей пленки, полярности жидкости и адсорбции растворенных веществ. [c.286]

    Основные приемы получения адсорбентов. Графитированные сажи, относящиеся к I типу адсорбентов, получают обработкой обычных саж при температуре около 3000° С в вакууме, в атмосфере инертного газа или в восстановительной среде. При 2200—3200° С наступает полная параллельная ориентация кристаллитов, частицы сажи приобретают форму полиэдров, грани которых образованы монокристаллами графита. Такая обработка приводит к тому, что основная поверхность полиэдрических частиц сажи состоит из базисных граней графита, и влияние неоднородных мест у ребер и углов становится незначительным. Вследствие этого адсорбционные свойства графитиро-ванных саж близки к адсорбционным свойствам однородной поверхности базисной грани графита. На поверхности подобных саж отсутствуют как ионы, так и функциональные группы или же л-связи. Вследствие этого адсорбция на графитированных сажах обусловлена дисперсионными силами притяжения. [c.109]


    Селективность адсорбента определяется в первую очередь силами взаимодействия адсорбата с поверхностью адсорбента. Это могут быть дисперсионные силы, действующие при адсорбции на неполярных адсорбентах. При взаимодействии вещества с поверхностью полярных адсорбентов существенную роль может играть образование водородной связи или же другие типы полярных взаимодействий. Поэтому рассмотренные выше зависимости сорбционных характеристик для неподвижных жидких фаз остаются в основном справедливыми и для адсорбентов. [c.75]

    Частицы графитированных саж состоят из полиэдров, гранями которых являются базисные грани графита. Графитированная сажа — адсорбент с весьма однородной поверхностью. Она относится к неспецифическим адсорбентам. Поверхность таких адсорбентов не имеет ни функциональных групп, ни обменных ионов. Адсорбция на графитированных сажах происходит под влиянием дисперсионных сил притяжения. Графитированная при 3000 °С термическая сажа имеет 5уд = 6—30 м /г, у канальной сажи 5уд = = 90 м /г, у ацетиленовой сажи Sy = 60 м /г. [c.86]

    Графитированные сажи [34, с. 22] получают обработкой обычных саж при 3000° С в вакууме или инертном газе. При такой обработке частицы саж приобретают форму полиэдров, грани которых образованы монокристаллами графита, растущими изнутри частицы. В связи с этим адсорбционные свойства поверхности графитированных саж очень близки к адсорбционным свойствам однородной поверхности базисной группы графита. Поверхность графитированных саж не обладает ни функциональными группами, ни я-связя-ми. Поэтому они относятся к неспецифическим адсорбентам. Адсорбция на поверхности этих саж происходит под влиянием дисперсионных сил притяжения. [c.79]

    Виды взаимодействия адсорбируемого вещества с адсорбентом [6, 7]. Между молекулами адсорбируемого вещества и адсорбента существует определенного вида взаимодействие, зависящее от природы как газообразного вещества, так и адсорбента. Рассмотрим наиболее типичные случаи проявления этого взаимодействия при физической адсорбции. Простейшим случаем является адсорбция неполярных молекул газа на поверхности неполярного же адсорбента. При таком виде адсорбции действуют лишь дисперсионные силы притяжения и силы отталкивания. [c.106]

    Наиболее простым случаем является адсорбция неполярной молекулы, также неполярным адсорбентом, когда действуют только дисперсионные силы притяжения и борцовские силы отталкивания. [c.86]

    Дисперсионное взаимодействие не зависит от температуры. Оно универсально, т. е. существует в любых системах, где есть электроны. Важным свойством дисперсионных сил является их аддитивность сила взаимодействия между двумя молекулами не зависит от присутствия других молекул. Применительно к адсорбции аддитивность проявляется в том, что суммируются силы взаимодействия молекул адсорбата со всеми близлежащими атомами поверхности адсорбента. Поэтому при адсорбции пористыми адсорбентами вклад дисперсионных сил в общее взаимодействие оказывается существенно ббльшим. [c.212]

    Адсорбцию принято делить на физическую и химическую адсорбцию (хемосорбцию). Резкой границы между ними не существует, хотя в предельных случаях они различаются легко. Физическая адсорбция обусловлена межмолекулярными (ван-дер-ваальсовыми) силами. В простейшем случае, при адсорбции неполярного адсорбата на неполярном адсорбенте, эти взаимодействия неспецифичны, т. е. это универсальные, дисперсионные силы. При физической адсорбции не происходит химического взаимодействия между адсорбатом и адсорбентом, и молекулы адсорбата на поверхности не теряют своей индивидуальности. [c.212]

    Молекулярные силы, вызывающие отклонения свойств реальных газов от идеальных законов, действуют и при адсорбции. Это в основном силы электрокинетические—так называемые дисперсионные силы, вызываемые согласованным движением электронов в сближающихся молекулах. Вследствие движения электронов даже молекулы с симметричным (в среднем) распределением электронной плотности обладают флуктуирующими (колеблющимися по направлению) отклонениями этой плотности от средней, т. е. флуктуирующими диполями, квадруполями и т. д. При сближении молекул движения этих флуктуирующих диполей, квадру-полеп и т. д. разных молекул перестают быть независимыми, что и вызывает притяжение. Эти силы называются дисперсионными потому, что флуктуирующие диполи вызывают явление [c.437]

    Расчет Фснз и Фсна проводится аналогично сделанному выше расчету для адсорбц ни аргона. Учитывая при расчете второй член в энергии дисперсионных сил (составляющий около 10% от первого) и усредняя результаты для положений ] и 2, получаем —Фд =0,854-1.88 п ккал/моль в близком соответствии с измерен- [c.492]

    Интересным адсорбентом для ГАХ является графитированная сажа. Адсорбция на ней осуществляется за счет неспецифических дисперсионных сил, и при разделении смесей определяющую роль играет число контактов звеньев молекулы с плоской поверхностью частиц сажи. Например, время удерживания углеводородов Сб в соответствии с уменьшением поверхности контакта изменяется в следующем ряду гексан>бензол>циклогексан. Графптпрован-ную сажу применяют и для анализа изомеров и изотопов. [c.89]

    Второй путь образования двойного слоя заключается в том, что поверхностные молекулы частиц твердой фазы диссоциируют в жидкости на ионы. Например, метакремниевая кислота НгЗЮз отдает в раствор ион водорода, в результате на поверхности остаются потенциалообразующие ионы с отрицательным зарядом. Из ионов водорода на твердой поверхности возникает адсорбционный слой, который имеет положительный заряд. Наконец, возможна специфическая адсорбция из жидкой фазы на электрически нейтральных поверхностях некоторых минералов [43]. Она обусловлена дисперсионными силами Ван-дер-Ваальса или Лондона, которые зависят от электрической поляризации атомов твердой поверхности пор ионами жидкости и поляризации самих ионов. При этом адсорбируются в первую очередь многозарядные ионы. Этот механизм возможен, например, в известняках. Вообще же примеры таких схем мало изучены. Независимо от пути образования двойной электрический слой имеет одну и ту же структуру. [c.112]

    Противоположное явление наблюдается при адсорбции на неполярных адсорбентах (активные угли, сажи). Активированный уголь независимо от природы исходного органического вещества и способа получения имеет структуру, подобную структуре графита [63, 64] углеродные атомы связаны ковалентными связями в гексагональные кольца, спаянные в плоские ячейки наподобие сот. Несколько слоев подобных ячеистых п-тгастинок, расположенных друг над другом и связанных между собой дисперсионными силами взаимодействия атомов С, лежащих в различных пластинках, составляют микрокристаллик — кристаллит. угля. [c.235]

    Е. М. Брещенко предложил гипотезу, согласно которой предпочтительная адсорбция углеводородов с неразветвленными цепями на угле также обусловливается взаимодействием между углеводородами и поверхностью угля под влиянием тех же дисперсионных сил сцепления, направленных перпендикулярно к оси углеводородной цепи. На основе этого Е. М. Брещенко представляет адсорбцию неразветвленных парафиновых цепочек следующим образом. [c.240]

    Силами притяжения, наиболее часто принимающими участие в физической адсорбции, являются неполярные силы Ван-дер-Ваальса. Поскольку же, согласно Лондону [22], между природой этих сил и природой чех факторов, которые вызь(вают дисперсию света, существует близкая связь, эти силы можно назвать также дисперсионными силами. Возннк1[ов< Ине неполярных сил Ваи-дер-Ваальса обусловлено главным образом взаимоде -ствиел) постоянно изменяющихся индуктирующих диполей и индуцированпых диполей. Энергия такого взаимодействия двух атомов обратно пропорциональна шестой сгепени расстояния  [c.29]

    Изучение электростатического межмолекулярного взаимодействия имеет большое значение для исследования свойств и структуры газов, жидкостей и твердых веществ. Ван-дер-ваальсовы силы обусловливают притяжение молекул и агрегацию вещества, превращение газообразного вещества в жидкое и далее в твердое состояние. Так, при охлаждении газообразного хлора, например, образуются кристаллы, составленные из молекул lj, между которыми действуют дисперсионные силы. Ван-дер-ваальсовы силы обусловливают также явление адсорбции, большое значение имеют в каталитических процессах и т. д. [c.106]

    Мы рассмотрели кратко две теории адсорбции — теорию мономолекулярной адсорбции Ленгмюра и теорию полимолекулярной адсорбции Поляни, на первый взгляд исключающие друг друга. Возникает вопрос, какая из этих теорий более правильна На это следует ответить, что обе теории ограничены в применении. В зависимости от природы адсорбента и адсорбтива и в особенности от условий адсорбции в одних случаях приложима одна, а в других—другая теория адсорбции. Теория Поляни применима только к явлениям чисто физической адсорбции. Теория Ленгмюра охватывает с известными ограничениями явления как физической, так и химической адсорбции. Однако теория Ленгмюра не может быть применена для объяснения адсорбции на тонкопористых адсорбентах, имеющих сужающиеся поры. В местах сужения, вследствие аддитивности дисперсионных сил, адсорбционный потенциал более высок и в таких местах происходит более интенсивная адсорбция. Это особенно заметно при температурах ниже критической температуры адсорбтива, т. е. при адсорбции паров, которые в этом случае заполняют наиболее узкие места капилляров в виде жидко-сти. Применение уравнения Ленгмюра к адсорбции тонкопористыми адащ1 ещ ами, имеющими поры с сужениями, затрудни-тельнигКбнечно, формально, уравнением Ленгмюра можно описать [c.96]


Смотреть страницы где упоминается термин Адсорбция дисперсионные силы: [c.455]    [c.492]    [c.494]    [c.258]    [c.261]    [c.110]    [c.141]    [c.236]    [c.236]    [c.92]    [c.292]    [c.167]    [c.152]    [c.39]   
Основы адсорбционной техники (1976) -- [ c.27 , c.28 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсионные

Силы дальнодействия дисперсионные и энергия адсорбции

Энергия адсорбции стандартная, свободная дисперсионные силы



© 2025 chem21.info Реклама на сайте