Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция неполярная физическая

    Лондоновские дисперсионные силы являются чисто физическими по характеру взаимодействия и не предполагают образования каких-либо химических связей. Физическая адсорбция является результатом действия таких сил. Для них характерны сравнительно низкие значения энергии и достаточно быстрое установление равновесия. Оба этих следствия физической адсорбции позволяют осуществлять достаточно легко хроматографический процесс в равновесных условиях и разделять смеси различных веществ. На неполярных адсорбентах, например на графитированной саже, вся энергия адсорбции неполярных соединений, в частности, углеводородов, обусловлена дисперсионным взаимодействием. [c.69]


    Виды взаимодействия адсорбируемого вещества с адсорбентом [6, 7]. Между молекулами адсорбируемого вещества и адсорбента существует определенного вида взаимодействие, зависящее от природы как газообразного вещества, так и адсорбента. Рассмотрим наиболее типичные случаи проявления этого взаимодействия при физической адсорбции. Простейшим случаем является адсорбция неполярных молекул газа на поверхности неполярного же адсорбента. При таком виде адсорбции действуют лишь дисперсионные силы притяжения и силы отталкивания. [c.106]

    При адсорбции неполярных молекул на полярных адсорбентах (кристаллах с ионной решеткой) к дисперсионным силам притяжения добавляются еще индукционные силы, которые возникают благодаря тому, что положительные и отрицательные ионы решетки адсорбента индуцируют в неполярной молекуле заряды противоположного знака. Типичным примером физической адсорбции такого типа является взаимодействие молекул На, N2, О2 и других с поверхностями, покрытыми окислами. [c.44]

    В случае поверхностей, образованных атомами с насыщенными валентностями, адсорбция объясняется физическими силами притяжения. Основную роль при этом играет дисперсионный эффект вандерваальсовских сил, в особенности при адсорбции неполярных или слабополярных молекул. [c.143]

    С ЖИДКОСТЬЮ. Этим можно объяснить наблюдаемую высокую степень полимеризации. Интересно отметить, что при низких полях отдельные пики обладают тонкой структурой, которая может быть связана с разной ориентацией молекул во время ионизации или с протеканием ионизации в различных слоях адсорбата. Мы надеемся изучить физическую адсорбцию неполярных атомов редких газов вблизи точки конденсации при низком давлении с целью выяснить таким путем структуру слоя. [c.145]

    Многочисленными исследованиями [21, 28—35] показано, что присутствие окислов на поверхности активного угля не оказывает практического влияния на физическую адсорбцию неполярных парообразных веществ, тогда как адсорбционная способность активных углей по полярным веществам заметно возрастает в результате окисления угля с образованием кислого поверхностного окисла. [c.17]

    Уравнение (П1.54) показывает зависимость коэффициента массопереноса от скорости газа, а также от свойств газа-носителя и коэффициента диффузии адсорбируемого газа, тогда как коэффициент диффузии в порах [уравнение (1П.55)] является в основном функцией внутренней пористости х и общего коэффициента диффузии. Чтобы определить, какая стадия — первая или вторая — влияет на скорость всего процесса, необходимо знание свойств всей системы, что возможно только в редких случаях. Поэтому практически нельзя избежать эмпирических методов проектирования. Здесь будут рассмотрены наиболее распространенные адсорбенты и газы, для очистки которых они используются, а также типы установок. Адсорбенты могут быть разделены на три группы неполярные твердые вещества, где происходит в основном физическая адсорбция  [c.158]


    Поэтому физическую адсорбцию указанных газов на угле следует рассматривать как результат совместного действия поляризации под влиянием электрического ноля угля, неполярных сил Ван-дер-Ваальса и сил отталкивания. [c.70]

    Присутствие кислорода на поверхности сажи в значительной степени предопределяет ее физические, физико-химические и эксплуатационные свойства. Усиление полярного характера поверхности саж при частичном покрытии ее кислородом существенно сказывается на адсорбционных свойствах адсорбция полярных веществ в этом случае увеличивается. Однако способность саж поглощать неполярные вещества при этом никогда полностью [c.15]

    В теоретических расчетах, выполняемых в рамках модели чисто физической адсорбции, для улучшения сходимости результатов с опытом, учитывают кроме дисперсионного притяжения силу отталкивания зарядов, принимая ее обратно пропорциональной 12-й степени расстояния между центрами зарядов. Если взаимодействующие частицы имеют постоянные дипольные моменты (например, молекулы воды или ионные поверхности) или свободные электроны (металлические поверхности), то между ними возникают и классические электростатические силы. Точный теоретический расчет их величины невозможен, хотя на практике они вносят существенный вклад в силу взаимодействия, а иногда и определяют характер процесса адсорбции. Так, например, гораздо более широкое применение в производственных условиях активированных углей по сравнению с синтетическими полярными адсорбентами - силикагелями, цеолитами, объясняется тем, что угли ввиду неполярности поверхностных частиц одинаково взаимодействуют как с полярными, так и с неполярными молекулами газовой фазы. Молекулы воды, обладая постоянным дипольным моментом, взаимно притягивают друг друга в паровой фазе, [c.380]

    Проведенное рассмотрение сил физической адсорбции, действующих между твердым телом и молекулой адсорбированного газа или пара, показывает, что в общем случае дисперсионные силы присутствуют всегда и, если только адсорбированные молекулы не обладают сильным дипольным моментом, будут давать основной вклад в полную энергию адсорбции. Их зависимость от расстояния такова, что первый слой адсорбированных молекул удерживается сильно, а следующие слои слабее причем энергия взаимодействия для них ненамного превосходит скрытую теплоту сублимации или испарения. Дисперсионные силы значительно больше в микропорах, чем над плоской поверхностью, и наиболее слабые они над выступами. Если твердое тело — ионный или металлический кристалл, электростатические силы будут также проявляться, но для ионных изоляторов они относительно малы, если адсорбируемые молекулы неполярны (например, аргон, метан). Электростатические силы заметно усиливаются и, возможно, становятся преобладающими, если адсорбируемые [c.29]

    Как указывалось выше, адсорбция на границе раздела неподвижная фаза — твердый носитель проявляется наиболее отчетливо для систем неполярная неподвижная фаза — полярный сорбат, для них же наблюдаются эффекты нелинейности изотермы адсорбции. Поэтому гомогенность поверхности носителя обычно оценивают при нанесении на него неполярной фазы (сквалана) и при исследовании полярных сорбатов. Гомогенизация поверхности носителя может быть достигнута при нанесении на него монослоя полярной неподвижной фазы. При этом полярная жидкость блокирует активные адсорбционные центры на поверхности носителя. Однако при повышении температуры специфические силы, связывающие адсорбционные активные центры с молекулами модификатора, уменьшаются и эффективность модифицирования снижается. Это существенно снижает ценность физического модифицирования для гомогенизации поверхности носителя. [c.45]

    Созданные потенциальной теорией представления применимы в первую очередь к физической адсорбции на неполярных поглотителях при поглощении паров неполяр- [c.16]

    Если и адсорбат и адсорбент неполярны, то между ними проявляются только дисперсионные силы и силы отталкивания, характерные для физической адсорбции. Хемосорбцию обусловливают валентные силы. При высоких степенях покрытия и малых [c.27]

    Для измерения общей удельной поверхности образца требуется неспецифичная физическая адсорбция. В действительности не существует адсорбата, теплота адсорбции которого хотя бы в некоторой степени не зависела бы от природы адсорбента. Все же наиболее подходящим для этих целей является адсорбция таких широко используемых неполярных молекул, как инертные газы и азот. Однако, если образец содержит фазу металла, применять азот нецелесообразно, так как на некоторых металлах азот хемосорбируется. Среди инертных газов наиболее [c.295]


    Адсорбцию принято делить на физическую и химическую адсорбцию (хемосорбцию). Резкой границы между ними не существует, хотя в предельных случаях они различаются легко. Физическая адсорбция обусловлена межмолекулярными (ван-дер-ваальсовыми) силами. В простейшем случае, при адсорбции неполярного адсорбата на неполярном адсорбенте, эти взаимодействия неспецифичны, т. е. это универсальные, дисперсионные силы. При физической адсорбции не происходит химического взаимодействия между адсорбатом и адсорбентом, и молекулы адсорбата на поверхности не теряют своей индивидуальности. [c.212]

    Более распространены и изучены кислотные кислородсодержащие поверхностные группы. Исследование адсорбции фенола, анилина и /г-нитроанилина на образцах ацетиленовой сажи и активного угля КАД с различным содержанием поверхностных функциональных групп показало, что поверхностные кис лородсодержащие группы угля и сажи существенно не участ вуют во взаимодействии молекул ароматических производных с поверхностью углеродных адсорбентов [1]. Аналогичные результаты получены М. М. Дубининым и Е. Д. Завериной [2], которые показали, что кислотные оксиды на поверхности активного угля не оказывают влияния на физическую адсорбцию неполярных органических веществ из паровой фазы. Специфическое взаимодействие поверхности угля с органическими ве-щестнами наблюдалось только в присутствии карбонильных групп на поверхности угля и при возникновении донорно-ак-цепторных комплексов [3]. [c.75]

    В гл. IV мы обсуждали теории мономолекулярной адсорбции, а в гл. V — две теории полимолекулярной адсорбции, В этой главе будут рассмотрены две теории, предложенные в более поздний период, которые также основаны на допущении, что при физической адсорбции образуется адсорбционный слой с толщиной большей, чем для мономолекулярного слоя. Первая из этих теорий—поляризационная—была предложена де-Буром и Цвиккером[1] в 1929 г, и высказана снова в несколько иной форме Брэдли [ ] в 1936 г. Эта теория объясняет адсорбцию неполярных молекул на ионных адсорбентах, допуская, что наружный слой ионов адсорбента индуцирует диполи в первом слое адсорбированных молекул, которые в свою очередь индуцируют диполи в следующем слое, и так до тех пор, пока не будет образовано несколько адсорбционных слоев. Вторая теория была первоначально изложена в двух статьях в 1938 г. в статье Брунауера, Эммета и Теллера [ ] и в 1940 г. в статье Брунауера, Л. Деминг, В. Демипга и Теллера [ ]. Эта теория основана на предположении, что те же силы, которые вызывают конденсацию, ответственны и за энергию связи полимолекулярной адсорбции. Мы будем называть эту теорию теорие полимолекулярной адсорбции. [c.196]

    Физическая адсорбция неполярных газов па поверхностп кремнезема при температурах от -170° до -190° [c.295]

    Спектроскопические исследования физической адсорбции полярных газов на пористых стеклах были проведены Фолманом и Иейтсом (1958а, б). При адсорбции полярных газов наблюдались значительно большие возмущения поверхностных гидрокси.чьных групп по сравнению с возмущениями прп адсорбции неполярных газов, представленных в табл. 34. В табл. 35 приведены смещения астоты полосы иоглощения гидроксильных групп при образовании водородно связи между иоверхиостными гидроксильными груннами и полярными адсорбатами. [c.296]

    Для случая адсорбции неполярных веществ на неполярно.м растворителе такой физической величиной является температура кипения или связанные с ней для этого тина соединенпй рефракция, поляризуемость, молярный объем. В случае поглощения ди-польных веществ на неполярном растворителе температура кипения не может являться характеристикой, так как она определяется динольным взаимодепствпем, в то время как это взаимодействие не используется при адсорбции. В этом случае в качестве характеристик могут использоваться рефракция, поляризуемость, молярный объем. В случае адсорбции дипольных веществ на [c.217]

    Изменение теплот адсорбции на различных главных кристаллических гранях меди. Вопрос о влиянии структуры кристаллической грани адсорбента на процесс физической адсорбции был теоретически рассмотрен Баррером [153] для ковалентных поверхностей и Орром [151] и Ленелем [154] для поверхностей диэлек- триков. Взаимодействие между неполярной молекулой и поликристаллической поверхностью металла было исследовано независимо Леннард-Джонсом [155], Бардином [156] и Маргенау и Поллардом [157]. Если учесть приближенный характер теории, применявшейся в последнем случае, то наблюдаемое согласие между теоретически рассчитанными и экспериментальными значениями является приемлемым. В настоящее время не имеется подробно разработанной теории процесса физической адсорбции неполярных молекул газа на поверхности монокристалла металла, которая описывала бы этот процесс исходя из известных данных относительно параметров и геометрии кристалла. [c.121]

    При очистке и разделении нефтепродуктов методом адсорбции имеет место физическая адсорбция, отличающаяся от химической тем, что адсорбируемые вещества (сорбаты) сохраняют свою ин-дивид альпость и могут быть выделены при десорбции. В первую очередь адсорбируются полярные соединения с большим дипо.иь-ным моментом, затем неполярные вещества, в молекулах которых под действием силового поля молекул адсорбента возникают индуцированные дипо.ти, и, наконец, неполярные вещества, адсорбируемость которых определяется дисперсионным взвимодействием молекул адсорбента и адсорбируемого вещества. В соответствии с этим компоненты разделяемого нефтепродукта по адсорбируемости можно расположить в следующем порядке (по убывающей) смолисто-асфальтеновые вещества- тяжелые ароматические уг-, геподороды средние ароматические углеводороды—> легкие ароматические углеводороды->-нафтеновые и парафиновые углеводороды. [c.226]

    Силами притяжения, наиболее часто принимающими участие в физической адсорбции, являются неполярные силы Ван-дер-Ваальса. Поскольку же, согласно Лондону [22], между природой этих сил и природой чех факторов, которые вызь(вают дисперсию света, существует близкая связь, эти силы можно назвать также дисперсионными силами. Возннк1[ов< Ине неполярных сил Ваи-дер-Ваальса обусловлено главным образом взаимоде -ствиел) постоянно изменяющихся индуктирующих диполей и индуцированпых диполей. Энергия такого взаимодействия двух атомов обратно пропорциональна шестой сгепени расстояния  [c.29]

    Это выражение будет использовано нами при расчете энергий взаимодействия адсорбированных атомов или молекул с поверхностью при физической адсорбции посл( дних на металлах и на угле, обусловленной неполярными силами Ван-дер-Ваальса. Как можно видеть, в этом выражении потенциальная энергия также обратно пропорциональна третьей степенн расстояния. [c.33]

    Несколько лет назад Миньоле [38] установил, что металл также вызывает поляризацию молекул, адсорбированных на его поверхности. При измерениях контактных потенциалов им было обнаружено, что даже неполярные молекулы, адсорбированные на nOiBepxHO TH металлов чисто физическими силами адсорбции, обнаруживают довольно заметные дипольные моменты. Так, например, он нашел, что при адсорбции ксенона на поверхности никеля происходит изменение потенциала на 0,85 в. Предполагая, что в этом случае образуется сплошной адсорбционный слой ксенона, Миньоле сделал вывод, что каждый атом ксенона приобретает индуцированный дипольный момент ц, равный 0,42-Ю ЭЛ. ст. ед. (0,42 ед. Дебая). Эти диполи ориентируются таким образом, что их положительные концы направлены в противоположную сторону от адсорбирующей поверхности. [c.40]

    Представляет интерес проверить, остается ли этот вывод справедливым в 0т 10шени>и других типов адсорбционных нро-цеееов, рассмотренных в ра.зделе V. В случае неполярных сил Ваи-дер-Ваальса, описанных в разделе У,2, этот вывод в принципе сохраняется. Уголь, действующий в основном как проводя-Ш.НЙ адсорбент, по самой своей природе обладает в пределах молекулярных размеров довольно плоской адсорбирующей поверхностью [41 б]. Однако между свойствами базисных плоскостей и граней гексагональных призм структуры графита имеется значительное различие, вследетвие чего поверхность обычного угля не обладает достаточной однородностью, чтобы на ней могла наблюдаться ступенчатая физическая адсорбция. Но если уголь графитизировать при очень высоких температурах, то можно изготовить адсорбент с однородной поверхностью, о чем свидетельствуют ступенчатые изотермы адсорбции, наблюдавшиеся при адсорбции криптона на графитизированной саже [99]. [c.67]

    Адсорбции аргона, кислорода и азота на хлористом калии посвящено большое число теоретических и экснериментальных исследований [36, 105, 106], В книге Брунауэра по физической адсорбции [17] дан обзор соответствующих работ. Все исследователи, ио-видимому, согласны с тем, что для адсорбированного атома или молекулы наиболее благоприятным является расположение непосредственно над центром элементарной ячейки кристаллической решетки. В этом месте электростатическая поляризация минимальна, а неполярные силы Ваи-дер-Ваальса имеют максимальную величину и играют преобладающую роль [107]. Дрэйн [37а[ обратил внимание на то, что энергия адсорбции азота на ионных поверхностях обычно выше, чем аргона или кислорода, в то время как в случае ненонных поверхностей внергии адсорбции вссх трех газов практически одинаковы. Он приписал этот эффект влиянию квадрупольного момента азота и рассчитал слагаемое энергии адсорбции, появляющееся в результате притяжения квадруполя молекулы азота полем кубической грани кристалла хлористого калия. Согласно этим расчетам, участки поверхности кристалла, расположенные тюносредственно над центром элементарной ячейки, по-прежнему остаются наиболее благоприятными для адсорбции. Найденное значение слагаемого энергии адсорбции, обусловленного притяжением [c.71]

    Существенной особенностью поверхности раздела твердое тело — жидкость является то, что адсорбирующееся вещество может связываться с поверхностью не только слабыми физическими силами , но и за счет образования химических связей с молекулами (ионами), расположенными на поверхности твердой фазы. Это явление, назьшаемое хемосорбцией, может приводить к кажущемуся несоблюдению правила уравнивания полярностей на границе раздела полярного кристалла (например, силиката или сульфида) и полярной среды (воды) адсорбция происходит таким образом, что углеводородные радикалы оказываются обращенными в сторону воды (рис. П1-8, а). При достаточно высоких концентрациях хемосорбирующегося ПАВ, когда уже вся поверхность покрыта монослоем, начинается образование противоположно ориентированного второго слоя, т. е. обычная адсорбция ПАВ из водного раствора на неполярной поверхности (рис. 111-8, б). Способность хемосорбирующихся ПАВ при адсорбции из водного раствора образовывать на поверхности частиц полярной твердой фазы адсорбцион-110 [c.110]

    В классической ЖХ работают с жидкостями, которые удерживаются на носителе за счет физической адсорбции. Типичным носителем является силикагель с площадью поверхности 10-500 м /г или оксид алюминия с площадью поверхности 60-200м /г. Неподвижными фазами служат полярные жидкости, такие, как вода и триэтиленгликоль. Подвижная фаза — неполярная, как, например, гексан или диизопропиловый эфир. [c.274]

    ОН и др.) связывают такое же количество воды, как и в молекулах жирной кислоты или спирта. Расчеты сольватации полимеров по числу полярных групп в 1 юлекуле, с учетом данных табл. 15, хорошо сходятся с прямыми весовыми определениями сольватации (в граммах растворителя на 1 г полимера), которые для ряда белков в воде составляют 0,25—0,35 г/г, для нитроцеллюлозы в ацетоне 0,47 г/г, для крахмала—0,35 г/г, и др. Этот результат показывает, что при сольватации молекулы растворителя располагаются в виде одного слоя лишь вокруг полярных групп полимера, приблизительно пропорционально их содержанию в цепи. Неполярные участки, лежащие между полярны1 ш группами в полимерах, и составляющие, например, в белках или нитроцеллюлозе около половины веса полимера, остаются свободными от растворителя, т. е. топография гидратного слоя выражается рядом островков на молекуле полимера. На каждом из этих центров сольватации связанные 1 юлекулы растворителя обладают определенной продолжительностью жизни и статистическое равновесие связывания и освобождения молекул растворителя на сотнях центров, существующих в 1 юлекуле полимера, аналогично электрохимическому равновесию при ионизации поливалентных электролитов (стр. 105) или динамическому равновесию адсорбции-десорбции, выражаемому изотермой Лангмюра (стр. 93), хотя лишь в последнем случае процесс происходит на физической поверхности раздела. Этим объясняется, почему сольватационное равновесие или взаимодействие полимерных 1 юлекул в растворе иногда выражают уравнением адсорбционной изотермы или говорят об адсорбции молекул растворителя молекулами полимера. В наличии внутренней связи этих различных процессов заключается одна нз характерных особенностей коллоидных систем, которая отсутствует в растворах низко молекулярных веществ (см. главу первую). [c.175]

    Встречающиеся в большинстве проблем межмолекулярного взаимодействия (в том числе и при физической адсорбции) межъядерные расстояния соответствуют очень небольшим перекрываниям электронных облаков взаимодействующих систем [24]. Условия аддитивности обменной энергии первого порядка uo мeн межмолекулярного взаимодействия многоатомных неполярных молекул при небольших перекрываниях рассматривались с помощью теоремы Хельмана — Фей-мана [24]. В том случае, когда электронные плотности взаимодействующих молекул хорошо описываются локализованными на атомах орбиталями, энергия uOVmeh аддитивна по энергиям взаимодействия пар атомов. Если же электронная плотность рассматриваемых молекул описывается молекулярными орбиталями, охватывающими всю молекулу, то энергия м Умен должна быть локально неаддитивной [24]. [c.250]

    Влияние твердой поверхности на эластомеры многообразно. В присутствии диоперсной фазы происходит ориентация цепей каучука в граничном слое, зависящая от диоперсности частиц и их сродства с каучуком [22 70, с. 211 34, с. 153—182]. На поверхности частиц дисперсной фазы происходит сорбция вулканизующих агентов, которая может иметь как физический (адсорбция), так и химический (хемосорбция) характер. Поверхность может оказывать каталитическое действие на реакции компонентов вулканизующей группы друг с другом, с каучуком и с самой поверхностью. Поскольку одновременное проявление нескольких эффектов затрудняет выявление влияния твердой поверхности на процессы вулканизации, представляет интерес исследование модельной системы полярные непредельные соединения — полярные поверхности. Первые удобны, так как плохо растворяются в каучуке, значительно сильнее, чем неполярный каучук, взаимодействуют с полярной поверхностью и претерпевают при вулканизации превращения, механизм которых сравнительно не сложен. Применение полярных поверхностей позволяет не только выделить сорбционное взаимодействие с вулканизующим агентом, но и уменьшить эффекты ориентации каучука у поверхности, не связанные с процессом вулканизации. [c.119]

    Наиболее общей причиной физической адсорбции, в основном определяющей адсорбцию на неполярных телах, является дисперсионное взаимодействие, возникающее в результате согласованного движения электронов в молекулах, находящихся в непосредственном соседстве. Изолированные неполярные молекулы в результате колебаний распределения электронной плотности обладают мгновенным дипольным моментом, поскольку такие колебания приводят к мгновенным смещениям центров тяжести положительных и отрицательных зарядов молекулы. Для изолированной молекулы все направления мгновенного дипольного момента равновероятны, поэтому средний дипольный момент молекулы, обусловленный колебаниями электро ной плотности, равен нулю. При сближении двух молекул взаимная ориентация их мгновен- [c.34]

    H.H. Авгуль (Институт физической химии АН СССР, Москва). Для развития молекулярной теории адсорбции (см. [1]) необходимы надежные экспериментальные данные по адсорбции па однородном неспецифическом адсорбенте [2]. Таким адсорбентом является графитированная термическая сажа. Многочисленные экспериментальные данные показывают, что все исследованные вещества, относящиеся к группам А, В ж D, по классификации А. В. Киселева [3], неполярные и полярные, адсорбируются на графитированной саже неспецифически. [c.73]

    Различают два основных вида адсорбции физическую и химическую. К силам, обусловливающим физическую адсорбцию, относят молекулярные взаимодействия 1) молекул с постоянным диполем ориентационный эффект)-, 2) молекул с индуцированным динолем индукционный эффект)-, 3) неполярных молекул дисперсионный эффект), а также 4) силы, обусловливающие водородную связь [1, стр. 851. Исследован1гя последних лет привели к выводу, что одной из важнейших составляющих адсорбционных сил являются так называемые силы изображения, появление которых связано с различием диэлектрических проницаемостей вещества дисперсных частиц и окруншющей среды. [c.20]

    Эта статья представляет собой обзор некоторых специфических эффектов при физической адсорбции, которыми автор особенно интересовался. Есть основания полагать, что по данным аспектам адсорбции опубликованный материал охвачен достаточно полно, однако отмечены не все известные специфические эффекты, имеющие место при адсорбции. Некоторое удивление может вызвать заглавие статьи, так как существует точка зрения [1], согласно которой физическая адсорбция по своей природе является в основном неспецифической, особенно когда в качестве адсорбатов используются неполярные газы. Однако ниже будет показано, что это является чрезмерным упрощением процесса и что специфичность щироко преобладает в физической адсорбции, хотя она и не так выражена, как в хемосорбции. Общий обзор по физической адсорбции уже был дан в этой серии сборников де Буром [2] по ряду специальных вопросов, которые здесь не рассматриваются, можно рекомендовать работы Кембола [3], Хилла [4] и Хелси [5]. В настоящей статье описаны явления возмущений, возникающих при физической адсорбции. Часть II посвящена аналогичным процессам в твердых адсорбентах. В части III рассмотрены другие вопросы адсорбционного взаимодействия, а именно изменения, которые возникают в самих адсорбированных молекулах. Наконец, в части IV описываются системы, для которых были измерены оба типа возмущений. [c.253]


Смотреть страницы где упоминается термин Адсорбция неполярная физическая : [c.34]    [c.24]    [c.101]    [c.196]    [c.34]    [c.403]    [c.270]    [c.588]    [c.76]    [c.74]   
Физиология растений Изд.3 (1988) -- [ c.95 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция физическая



© 2024 chem21.info Реклама на сайте