Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плазматический белок системы

    Макрофаги, продуцирующие ряд белков системы комплемента, экспрессируют рецепторы, распознающие упомянутые белки. На лимфоцитах В-ряда находятся рецепторы иммуноглобулинов. Они сохраняются на активированных лимфоцитах — лимфобластах, способных уже секретировать новообразованные иммуноглобулины. Существенно прн этом, что биосинтез иммуноглобулинов лимфобластами носит регулируемый характер. В то же время их потомки — плазматические клетки, будучи лишенными способности экспрессировать рецепторы иммуноглобулинов (Рс-рецепторы), характеризуются постоянным и высоким уровнем биосинтеза иммуноглобулинов. Последнее может рассматриваться как косвенное доказательство важной роли рецепторов данного белка в регуляции его биосинтеза. [c.87]


    Этот аспект изучения взаимодействий между липидами и белками мало затрагивался в сфере технологии. Важное значение этих взаимодействий для структуры и функции клеточных мембран и плазматических липопротеинов послужило стимулом многочисленных исследовательских работ на модельных системах. Эти работы позволили приобрести хорошие общие знания о молекулярных ассоциациях. Таким образом, здесь приводятся последние сведения о видах взаимодействий между липидами и белками, полученные в результате модельных исследований. Большинство биологических систем находится в водных средах, и во многих технологических процессах вода наиболее часто используется в качестве растворителя. Кроме того, вследствие особой структуры липидов белки больше взаимодействуют с липидными фазами, чем с изолированными молекулами. Здесь будут показаны структура липидных фаз в гидратированной сре- [c.306]

    Клеточная мембрана — неотъемлемый элемент любой клетки. Ее роль в первую очередь состоит в том, чтобы отгородить содержимое клетки от окружающей среды, сосредоточить в небольшом объеме простран,ства все необходимые информационные и функциональные структуры, а у клеток эукариот, кроме того, разделить внутреннюю часть клетки на различные функционально автономные отсеки-ядро, митохондрии и ряд других. Во внешней плазматической мембране клетки функционируют транспортные белки, рецепторы и связанные с ними белковые системы преобразования полученных сигналов. Но структурную основу мембран составляют липиды. [c.55]

    В качестве примера первично-активного транспорта можно привести транспорт, осуществляемый На /К -АТФ-азой, как одной из наиболее важных и широко распространенных активных транспортных систем в плазматической мембране животных клеток. Эта система, получившая название Na -К -насоса, отвечает за поддержание в клетке высокой концентрации и низкой Na путем переноса внутрь клетки, а Na из клетки наружу против градиента их концентрации и поэтому требующей затраты АТФ. Оказывается, в животной клетке внутриклеточная концентрация ионов калия примерно в 30 раз выше, а ионов натрия в 10 раз ниже, чем в окружающей среде. Такая асимметрия ионного состава определяет содержание воды и ионный состав в клетке, электрическую возбудимость нервных и мышечных волокон, служит движущей силой для транспорта в клетку сахаров и аминокислот, является важным фактором в процессе биосинтеза белка. [c.311]


    Плазматическая мембрана играет важнейшую роль в обмене ве-ш еств. Она служит осмотическим барьером клетки и контролирует как поступление веществ внутрь клетки, так и выход их наружу. В мембране имеются механизмы активного транспорта и системы субстрат-специ-фичных пермеаз. По-видимому, липидная пленка элементарной мембраны пронизана мостиками (или каналами) из белков, и именно эти белки служат порами, через которые осуществляется регулируемый транспорт веществ. [c.24]

    Система, в которой претерпевают модификацию (процессинг) и транспортируются различные клеточные материалы, например белки, поступающие из ЭР. В пузырьках Гольджи материалы транспортируются в другие части клетки или же к плазматической мембране для секреции. В аппарате Гольджи образуются лизосомы [c.179]

    Глюкоза, аминокислоты и ионы диффундируют из фильтрата в клетки проксимального извитого канальца, откуда активно переносятся транспортными системами плазматической мембраны в межклеточные пространства и щели лабиринта с помощью встроенных в мембрану белков-переносчиков. [c.27]

    Эндоцитозные пузырьки, образующиеся из окаймленных ямок, имеют относительно небольшие размеры ( 150 нм в диаметре). Фагосомы же имеют диаметр, который определяется размерами поглощаемой частицы. Иногда они почти такого же размера, как и сами фагоцитирующие клетки (рис. 6-83). Фагосомы сливаются с лизосомами и образуют фаголизосомы. Здесь происходит деградация поглощенного материала. Неперевариваемые продукты остаются в фаголизосомах, образуя остаточные тельца. Часть поглощенных компонентов собственной плазматической мембраны, как и при эндоцитозе возвращается обратно в плазматическую мембрану. В некоторых макрофагах пептиды, получившиеся при деградации поглощенных белков, возвращаются на клеточную поверхность связанными с гликопротеинами главного комплекса гистосовместимости (см. разд. 18.6.10). Поверхность этих макрофагов затем тщательно обследуется Т-лимфоцитами иммунной системы. Если пептиды происходят от чужеродного агента - они активируют Т-лимфоциты к иммунному ответу. Таким образом, макрофаги в данном случае выступают как клетки, представляющие антиген (см. разд. 18.6.10). [c.421]

    Как же работают такие системы с обратной связью Эксперименты указывают на то, что детектор тургорного давления в плазматической мембране индуцирует транспорт ионов (чаще всего это активное накачивание в клетку ионов К ) в ответ на внезапное падение тургорного давления, тогда как резкое повыщение тургора приводит к вывод ионов К . Эти процессы протекают очень быстро и, по-видимому, связаны с какими-то изменениями в специфических транспортных белках плазматической мембраны [c.391]

    Ионам Са принадлежит центральная роль в регуляции многих клеточных функций. Изменение концентрации внутриклеточного свободного Са является сигналом для активации или ингибирования ферментов, которые в свою очередь регулируют метаболизм, сократительную и секреторную активность, адгезию и клеточный рост. Источники Са могут быть внутри- и внеклеточными. В норме концентрация Са в цитозоле не превышает 10 М, и основными источниками его являются эндоплазмати-ческий ретикулум и митохондрии. Нейрогормональные сигналы приводят к резкому повышению концентрации Са (до 10 М), поступающего как извне через плазматическую мембрану (точнее, через потенциалзависимые и рецепторзависимые кальциевые каналы), так и из внутриклеточных источников. Одним из важнейших механизмов проведения гормонального сигнала в кальций—мессенджерной системе является запуск клеточных реакций (ответов) путем активирования специфической Са -кальмодулин-зависимой протеинкиназы. Регуляторной субъединицей этого фермента оказался Са -связывающий белок кальмодулин (мол. масса 17000). При повышении концентрации Са в клетке в ответ на поступающие сигналы специфическая протеинкиназа катализирует фосфорилирование множества внутриклеточных ферментов —мишеней, регулируя тем самым их активность. Показано, что в состав киназы фосфорилазы Ь, активируемой ионами Са , как и КО-синтазы, входит кальмодулин в качестве субъединицы. Кальмодулин является частью множества других Са -свя-зывающих белков. При повышении концентрации кальция связывание Са с кальмодулином сопровождается конформационными его изменениями, и в этой Са -связанной форме кальмодулин модулирует активность множества внутриклеточных белков (отсюда его название). [c.296]

    Как уже отмечалось в 3.2, взаимодействие биополимера со специфическим лигандом не сопряжено с преодолением существенных энергетических барьеров и является быстрым процессом. Поэтому чаще всего исследователи имеют дело с равновесными системами, требуюпшми термодинамического описания. Б дальнейшем будут рассматриваться системы, в которых либо оба партнера находятся в растворе, как в гомогенных ферментативи11гх реакц11ях при взаимодействии гемоглобина с кислородом, так и при взаимодействии в растворе антигена с антителом и т.п., либо биополимер на.ходится в составе мембраны на гюверхности клетки или в препарате мембран и, следовательно, образует отдельную фазу, как в случае рецепторов или белков, осуществляющих транспорт веществ через плазматическую мембрану. Если партнеры находятся в растворе, то характеристиками количества как биополимера Р, так и лиганда L могут служить концентрации. В гетерогенных системах можно говорить лишь о количестве биополимера. Характеристикой взаимодействия в общем случае служит константа ассоциации А а, выражение для которой запишется в виде [c.117]


    Как работают такие регуляторные системы Эксперименты, проведенные с целью изучить быстрые реакции растительных клеток на изменения тургорного давления, показали, что тензодатчики , возможно, находятся в плазматической мембране. Так, напрнмер, внезапное понижение тургорного давления индуцирует активный перенос определенных молекул нли ионов, чаще всего ионов К , внутрь клетки, тогда как повыщение тургорного давления вызывает обратный эффект. Этн процессы протекают очень быстро и, по-видимому, связаны с какими-то изменениями в спещ1фнческих транспортных белках плазматической мембраны. В отличие от этого образование осмотически активных молекул из запасных полимеров происходит более медленно. [c.167]

    Перенос питательных веществ через плазматическую мембрану, как правило,,специфичен поглощаться могут только те вещества, для которых имеется соответствующая транспортная система. За небольщими исключениями, транспорт зависит от наличия специфических пермеаз или транслоказ. Речь идет о мембранных белках, само название которых указывает на то, что они обладают свойствами ферментов, т.е. могут индуцироваться субстратом, специфичны в отношении субстрата и образуются только в таких условиях, в которых возможен синтез белков. [c.257]

    Наряду с транспортными системами, использующими протонный потенциал, существуют также системы, зависимые от АТР. Определенную роль здесь играют периплазматические связуюпще белки (рис. 2.28). Плазматическая мембрана животных клеток не транспортирует протоны и не создает протонного градиента. Мембранный потенциал, вероятно, поддерживается только АТР-зависимыми насосными механизмами, например натрий-калиевым насосом, а натриевый потенциал в свою очередь доставляет энергию для симпорта питательных веществ вместе с ионами На .  [c.260]

Рис. 6-55. Транспортная система, зависящая от периплазматическш субстрат-связываюгцих белков в бактериях с двойной мембраной. Растворенные вещества диффундируют через каналообразующие белки (порины), находящиеся во внещней мембране, и связываются с периплазматическими субстрат-связывающими белками. При этом белки испытывают конформационные изменения, приобретая способность связываться с белками-нереносчиками плазматической мембраны, которые затем перехватывают субстрат и активно транспортируют его через бислой. Эта стадия опосредуется гидролизом АТР. Пептидогликаны для простоты пе показаны Их пористая структура позволяет субстрат- Рис. 6-55. <a href="/info/185658">Транспортная система</a>, зависящая от периплазматическш субстрат-связываюгцих белков в бактериях с двойной мембраной. <a href="/info/73744">Растворенные вещества</a> <a href="/info/1799103">диффундируют через</a> <a href="/info/509604">каналообразующие белки</a> (порины), находящиеся во внещней мембране, и связываются с периплазматическими субстрат-<a href="/info/1416121">связывающими белками</a>. При этом белки испытывают <a href="/info/2999">конформационные изменения</a>, приобретая <a href="/info/664586">способность связываться</a> с белками-нереносчиками <a href="/info/101065">плазматической мембраны</a>, которые затем перехватывают субстрат и активно транспортируют его <a href="/info/1402903">через бислой</a>. Эта стадия опосредуется гидролизом АТР. Пептидогликаны для простоты пе показаны Их <a href="/info/117891">пористая структура</a> позволяет субстрат-
    Плазматическая мембрана, мембраны аппарата Гольджи и лизосом - это части мембранной системы, связанной с ЭР с помощью трапспортпых пузырьков, поставляющих в нее и белки, и липиды. Митохондрии и пероксисомы пе принадлежат к этой системе и нуждаются в других механизмах для импорта белков и липгшов мембран. Мы уже убедились в том, что большинство белков этих органелл доставляется из цитозоля посттрапеляциоппо. Хотя некоторые липиды модифицируются в митохондриях, сами митохондрии все равно должны получить их либо прямо из ЭР, где опи синтезируются, либо через другие клеточные мембраны. [c.57]

    Многие секреторные клетки, такие, как аципарпые клетки поджелудочной железы, поляризованы, и экзоцитоз протекает только па их апикальной поверхности. Апикальная часть клеток обращена обычно в просвет системы протоков, собирающей секрет. Когда секреторный пузырек сливается с плазматической мембраной, его содержимое выбрасывается из клетки путем экзоцитоза, а мембрана становится частью плазматической мембраны (см. разд. 6.5.1). Это должно было бы сильно увеличивать поверхность плазматической мембраны. В действительности такое увеличение возникает очень ненадолго, потому что участки мембраны удаляются с поверхности путем эндоцитоза (или рециркулируют) почти с той же скоростью, с которой они добавляются при, экзоцитозе (рис. 8-78). Очевидно, что при таком удалении мембранные белки секреторных пузырьков возвращаются в аппарат Г ольджи, где [c.76]

    В мышечных клетках есть также целая система очень плохо растворимых белковых филаментов, которые можно выделить лишь после полной экстракции миозина и актина из саркомера концентрированным раствором йодистого калия. Одна группа таких филаментов, построенных из очень крупного белка, названного титином. тянется параллельно толстым и тонким филаментам и соединяет толстые филаменты с Z-диском. Хитиновые филаменты очень эластичны и, по-видимому, действуют как пружины, центрируя толстые филаменты между Z-дисками (рис. 11-21). Еще одна группа нерастворимых нитей - это промежуточные филаменты (разд. 11.5), которые расположены между Z-дисками соседних миофибрилл. Предполагается, что они удерживают саркомеры в определенных пространственных отношениях между собой и соединяют миофибриллы с плазматической мембраной мышечной клетки. [c.267]

    Астроциты (рис. 19-8) - самые многочисленные и разнообразные глиальные клетки, но и самые загадочные их функпия все еще в значительной части не выяснена, хотя кажется несомненным, что они играют важную роль в процессе построения нервной системы (разд. 19.7.2) и регулируют химический и ионный состав среды, окружающей нейроны. Например, одна из разновидностей астроцитов имеет отростки с расширенными концами, которые, будучи связаны соединительными комплексами вроде встречающихся в эпителиях (разд. 14.1), образуют изолирующий барьер на внешней поверхности центральной нервной системы. Другие отростки этих же астроцитов образуют сходные концевые ножки на кровеносных сосудах, эндотелиальные клетки которых случае капилляров и венул) соединяются здесь необычайно развитыми плотными контактами, так что создается гематоэнцефалический барьер. Этот барьер предотвращает проникновение из крови в ткань мозга водорастворимых молекул, если их не переносят специальные транс портные белки, находящиеся в плазматической мембране эндотелиальных клеток. Таким образом, нейроны оказываются в контролируемой и защищенной среде, что имеет решающее значение для молекулярного механизма передачи электрических сигналов. [c.294]

    Кортикальные микротрубочки лежат вблизи внутренней поверхности плазматической мембраны и направлены, как правило, перпендикулярно длинной оси клетки (рис. 20-47). Нри изучении этой области методом иммунофлуоресцентной микроскопии оказалось, что система перекрываюшихся микротрубочек окружает внутренность клетки сплошным упорялоченным слоем (рис. 20-48). Микротрубочки прикреплены к плазматической мембране белками, природа которых еще плохо изучена. [c.421]

    Эти белки могут быть адресованы внутренней поверхности плазматической мембраны благодаря миристинилированию аминоконцевой части их а --последовательности. Основной недостаток описанного подхода, свойственный любой системе, в которой осуществляется экспрессия составного белка, — вероятная лабильность и(или) низкая биологическая активность экспрессируемого продукта. [c.284]

    Изнутри к клеточной стенке примыкает избирательно прони -цаемая плазматическая мембрана — плазмалемма, окружаю -щая всю цитоплазму н состоящая из белков и фосфолипидов Отдельные органеллы, например хлоропласты (центры фотосинтеза) и митохондрии (в которых протекает процесс дыхания)у. также окружены мембраной. Почти все части клетки пронизывает система взаимосвязанных секреторных м мбран — эндо-плазматический ретикулум. Стопки мембранных дисков — аппарат Гольджи или диктиосомы, — принимают, по-видимому участие в образовании вакуолей, также ограниченных мембра ной (тонопластом) и содержащих раствор различных органи ческих и неорганических веществ. Внутреннюю структуру мембран изучают методом замораживания — травления. Клетк№ прн этом замораживают и раскалывают тупым ножом. Раскалываются они вдоль естественных поверхностей, обычно вдоль мембран. После этого лед удаляют возгонкой под вакуумом и обнажившиеся участки напыляют углем или металлом. [c.78]

    Компоненты этой системы в клетках млекопитающих показаны на рис. 44.3. Взаимодействие гормона со своим рецептором приводит к активации либо инактивации аденилатциклазы. Этот процесс опосредуется по крайней мере двумя ОТР-за-висимыми регуляторньп и белками, обозначаемыми О,- (стимулирующий) и С)- (ингибирующий) белок (используют также обозначения К,- и К(-белок) каждый из этих белков состоит из трех субъединиц а, Р и у. Аденилатциклаза, локализованная на внутренней поверхности плазматической мембраны, катали- [c.162]

    Распределение фосфолипидов разного вида между внешним и внутренним слоем подчинено определенным закономерностям, характерным для каждой ткани. В частности, ФС уникален потому, что он всегда находится на внутренней поверхности мембраны эритроцита. При добавлении экзогенного меченого ФС к эритроцитам он немедленно переносится на внутреннюю поверхность мембраны, так как мембранные белки поддерживают асимметричное распределение зарядов на двух поверхностях плазматической мембраны. Если же эндогенный ФС появляется на внешней поверхности из-за локального разрушения мембраны, то эритроцит оказывается непригодным для гомеостаза и удаляется из кровотока ретикуло-эндотелиальной системой ( onnor, S hroit, 1988). [c.111]

    Ключ к пониманию этой взаимосвязи заключается в структуре мембранных белков. Это одноцепочечные полипептиды, молекулярная масса которых достигает 800 кДа, Весовое соотношение белковых компонентов и липидов в составе большинства плазматических мембран колеблется от I 4 до 4 1 в зависимости от ткани и возраста организма (Като, 1990). При рассмотрении процессов клеточной саморегуляции участки цепей этих белков, находящиеся на внешней стороне мембраны, называют клеточными рецепторами, На фанице раздела мембрана—внешняя среда в сфуктуре белка могут также существовать так называемые шарнирные области с высоким содержанием пролина и лейцина, которые позволяют внешней цепи (рецептору) совершать вращательные движения и подсфаиваться под положение лигандной молекулы (Кульберг, 1987), При изучении процессов клеточного узнавания и формирования иммунного ответа внешние части мембранных белков, чаще всего гликозилированные, называют маркерами клеточной дифференциации (или клеточными детерминантами) и классифицируют по системе D (Ярилин, 1999). [c.118]

    Актин входит в состав многих клеточных структур и может связываться с целым рядом специфических белков. Жесткие пучки параллельно расположенных актиновых филаментов, скрепленных белковыми сшивками (например, фимбриновыми), имеются в микроворсинках и стереоцилиях, где они выполняют главным образом структурную роль. Пучки актиновых нитей, связанные с короткими биполярными агрегатами молекул немышечного. миозина, встречаются в определенных участках клетки, где нужна сократительная активность, например в сократимом кольце делящейся клетки, в опоясывающих десмосомах у апикальной поверхности эпителиальных клеток, а также в напряженных нитях, характерных для клеток, растущих в монослойной культуре. Менее упорядоченные системы актиновых филаментов содержатся во всей цитоплазме и могут придавать ей свойства геля. Густая сеть таких филаментов образует непосредственно под плазматической мембраной так называемый кортикальный слой. Эта сеть формируется с помощью гибких сшивающих белков, таких как филамин она способна обратимо изменять свои механические свойства в зависи.ности от концентрации ионов Са , что сопровождается повышением или понижение.ы вязкости цитоплазмы эти изменения происходят при участии актин-фрагментирующих белков, таких как гельзолин. Предполагается, что актиновые сети, прикрепленные с помощью специальных белков к плазматической мембране, взаимодействуют с немышечным миозином, обеспечивая подвижность клеточной поверхности, и играют ключевую роль в сложном процессе передвижения всей клетки. [c.120]

    Не так давно белковый продукт гена sr был идентифицирован как про-теинкиназа с необычной специфичностью. Этот фермент катализирует фосфорилирование тирозиновых остатков в определенной группе белков, из которых наиболее интересен (в связи с изучением цитоскелета) винкулин. Как уже говорилось, этот белок, возможно, участвует в прикреплении пучков актиновых филаментов к плазматической мембране. В этом случае его модификация продуктом вирусного гена sr могла быть непосредственной причиной тех изменений цитоскелета, которыми сопровождается трансформация клеток вирусом саркомы Рауса. И, что еще более важно, эти наблюдения наводят на мысль, что процессы роста и деления клеток в норме контролируются сигналами, получаемыми от упорядоченной системы цитоскелета. [c.129]


Смотреть страницы где упоминается термин Плазматический белок системы: [c.55]    [c.577]    [c.367]    [c.37]    [c.210]    [c.26]    [c.394]    [c.420]    [c.85]    [c.368]    [c.388]    [c.264]    [c.71]    [c.42]    [c.297]    [c.357]    [c.125]    [c.120]    [c.123]    [c.287]    [c.357]   
Витамин С Химия и биохимия (1999) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте