Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействия между белками и липидами

    Кроме того, реакции с белками происходят, когда липиды находятся в нативном состоянии, а также после гидролиза и окисления их компонентов. Эти продукты гидролиза и окисления сами являются липидами, а иногда природными метаболитами. Поэтому вначале представим механизмы гидролиза и окисления, а уж затем рассмотрим во всей совокупности взаимодействия между белками и различными категориями липидов. [c.287]


    Современные методы измельчения тканей обычно сочетают с одновременной экстракцией белков из гомогенатов тканей. Большинство белков тканей хорошо растворимо в 8—10% растворах солей. При экстракции белков широко применяют различные буферные смеси с определенными значениями pH среды, органические растворители, а также неионные детергенты — вещества, разрушающие гидрофобные взаимодействия между белками и липидами и между белковыми молекулами. [c.24]

    Наличие полярных участков в молекулах белков и липидов ведет к возникновению электростатических сил. Взаимодействие между белками и липидами осуществляется путем образования ковалентных связей, за счет электростатического, полярного и гидрофобного взаимодействия. [c.31]

    Сторонники слоистого строения мембраны допускают ряд модификаций элементарной мембраны, в частности возможность гидрофобного взаимодействия между белками и липидами, а также возможность проникновения белка в бимолекулярный липидный слой и т. д. [c.379]

    Сейчас пока неясно, могут ли существующие методы и подходы, в основном разработанные при исследовании белков и нуклеиновых кислот, полностью раскрыть повеление рассматриваемых здесь систем. Многие из этих систем являются предметом интенсивных исследований, и мы приведем основные сведения о них, полученные к настоящему времени, чтобы читатель мог сопоставить эти системы с белками и нуклеиновыми кислотами. (Вопросы, касающиеся мембран и взаимодействий между белками и липидами, рассмотрены также в гл. 25.) [c.195]

    Взаимодействия между белками и липидами [c.230]

    ВЗАИМОДЕЙСТВИЯ МЕЖДУ БЕЛКАМИ И ЛИПИДАМИ В БИСЛОЕ [c.230]

    Специфические взаимодействия между белками и липидами должны определять основные особенности структуры и свойств мембраны. Исходя из общих соображений о нековалентных взаимодействиях, можно с полной уверенностью сказать, что гидрофобные хвосты липидных молекул должны охотно взаимодействовать с неполярными боковыми цепями аминокислот, а полярные головки — с полярными частями белковых молекул. Однако существенные детали этих взаимодействий еще остаются невыясненными. Перечислим несколько вопросов, исследование которых только начинается. [c.230]

    Взаимодействия между липидами и белками в растительных продуктах отличаются большим разнообразием, обусловленным множеством участвующих в них липидов и белков, а также многочисленностью сырьевых материалов и соответствующих технологических процессов. Все более активное выявление и изучение этих взаимодействий предопределяется, с одной стороны, разработкой новых технологий получения белков и, с другой стороны, развитием и совершенствованием как по качеству, так и по количеству методов и оборудования для идентификации и определения содержания липидов и анализа их взаимодействий с белками. Знания в этой области быстро расширяются цель настоящей главы состоит не в исчерпывающем рассмотрении всего вопроса, а в том, чтобы дать примеры или характерные сведения, которые могли бы служить руководством для читателей, желающих глубже вникнуть в эту проблему. [c.284]


    В порядке вступления приведем пример мукомольного и хлебопекарного производств, которые позволяют расположить в технологической цепи процессы, в которых взаимодействия между липидами и белками вносят вклад в определение свойств растительных продуктов. [c.285]

    ФИЗИКО-ХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЗАИМОДЕЙСТВИИ МЕЖДУ ЛИПИДАМИ И БЕЛКАМИ [c.306]

    Этот аспект изучения взаимодействий между липидами и белками мало затрагивался в сфере технологии. Важное значение этих взаимодействий для структуры и функции клеточных мембран и плазматических липопротеинов послужило стимулом многочисленных исследовательских работ на модельных системах. Эти работы позволили приобрести хорошие общие знания о молекулярных ассоциациях. Таким образом, здесь приводятся последние сведения о видах взаимодействий между липидами и белками, полученные в результате модельных исследований. Большинство биологических систем находится в водных средах, и во многих технологических процессах вода наиболее часто используется в качестве растворителя. Кроме того, вследствие особой структуры липидов белки больше взаимодействуют с липидными фазами, чем с изолированными молекулами. Здесь будут показаны структура липидных фаз в гидратированной сре- [c.306]

    Характер связей между белками и липидами отражается на переходе от геля к жидкому кристаллу у молекул липидов [82]. Так, белки, взаимодействующие в основном через посредство гидрофобных связей, вызывают уменьшение энтальпии перехода, пропорциональное концентрации белков. В этом случае определенное число молекул липидов больше не участ- [c.311]

    Приведем примеры. Гидрофобным взаимодействиям между липидами и белками благоприятствует денатурирование белков. Так, эмульсии, приготовленные с денатурированными глобулинами сои, более стабильны, чем эмульсии с такими же, но нативными белками. [c.317]

    Плазматическая мембрана состоит из двойного липидного слоя. Гидрофобные концы молекул фосфолипидов и триглицеридов направлены внутрь, а гидрофильные головки — наружу. Благодаря гидрофобным взаимодействиям между остатками жирных кислот, входящих в состав липидов, и электростатическому взаимодействию между гидрофильными головками мембрана стабилизируется. В двойной слой липидов встроены белки так называемые интегральные белки мембран. Они плавают в этом слое, будучи погружены в него частично, или же пронизывают его насквозь. Другие белки прикреплены к поверхности мембраны, и их называют периферийными белками (рис. 1.6). Некоторые мембраны, по-видимому, с одной или с обеих сторон покрыты сетью вытянутых белковых молекул. [c.23]

    Хлорофиллы дают несколько максимумов поглощения. Спектральные свойства их зависят от взаимодействия между собой, а также с липидами и белками фотосинтезирующих мембран. [c.188]

    В последнее время внимание исследователей привлекают вопросы, связанные с кинетикой и механизмом органических реакций в присутствии поверхностноактивных веществ (ПАВ) [1]. Эти соединения, называемые также амфифильными, или детергентами, обычно содержат длинную углеводородную цепь — гидрофобную часть и полярную или ионную группу — гидрофильную часть. В разбавленных растворах они образуют агрегаты с высоким молекулярным весом, или мицеллы. Взаимодействие между субстратом реакции и специфически ориентированными гидрофобной и гидрофильной частями молекул в мицеллах является основной причиной поразительного ускорения или ингибирования поверхностноактивными веществами многих органических реакций. Во многих случаях в мицеллярном катализе обнаруживается отчетливая субстратная специфичность, а кинетика подчиняется уравнению Михаэлиса — Ментен (с насыщением по концентрации субстрата), и в этом отношении мицеллярный катализ во многом аналогичен ферментативному. Кинетическая аналогия мицеллярных катализаторов с ферментами и известное структурное сходство мицелл и белковых глобул явились существенным стимулом исследований в этой области. Мицеллы детергентов, значительно более простые в структурном отношении, чем белки, позволяют подойти к объяснению кинетических свойств ферментативных и мицеллярных систем. Изучая изменения физических свойств системы при образовании мицелл, можно оценить роль гидрофобных взаимодействий и, таким образом, моделировать гидрофобные взаимодействия в белках и липидах. [c.222]

    При исследовании природных липопротеидов возникают два основных вопроса 1) какова организация липидных и белковых компонентов в глобулярных частицах и 2) как именно взаимодействуют между собой белки и липиды Известно здесь пока очень мало. Большинство липопротеидов, по-видимому, образуют мицеллы, внутри которых находятся неполярные липиды, а снаружи — полярные части белков и другие липиды. Однако многое при этом остается неясным. Расположены ли белковые субъединицы в мицеллах упорядоченным образом Некоторые исследования ЛНП позволяют предположить, что это действительно так. Контактируют ли белковые субъединицы друг с другом или они [c.232]


    По-видимому, можно поставить такие эксперименты, которые позволили бы непосредственно исследовать характер взаимодействия между липидами и белками. Такие эксперименты важны не только для понимания структуры липопротеидов, но и для решения значительно более обшей проблемы структуры и функций мембранных белков. [c.234]

    Другая крупная проблема состоит во взаимодействиях между белками и другими биохимическими компонентами растений, особенно углеводами, липидами и фенольными соединениями, которые очень часто, если не всегда, оказываются связанными с изолированными белками. Каков характер этих связей Когда они образуются Как они разрываются Как они отражаются на физико-химических или питательных свойствах белков Эти вопросы изучаются в НИАИ и университете Бордо. [c.12]

    Метод спектроскопии ЯМР был использован [37] для изучения взаимодействия между белком гликофорином из мембран эритроцитов и дипальмитоилфосфатидилхолином, меченным изотопом по метнльным группам холиновой головки. При температурах ниже температуры фазового перехода фосфолипидов в спектре ЯМР наблюдались два сигнала узкий и широкий. Узкий пик был отнесен к холиновой головке, которая, как полагают, более подвижна в непосредственной близости к белку этот вывод не исключает возможности иммобилизации алкильных цепей таких пограничных липидов и. гледпвятельно, может не противоречить результатам, полученным при изучении поведения пограничных липидов в цитохромоксидазе и кальцийзависимой АТР-азе. [c.125]

    Это обеспечивает способность хлорофилла взаимодействовать с белками, липидами и другими компонентами пластид и обусловливает возможность определенной пространственной ориентировки молекул хлорофилла на поверхностях между гедрофильннми и гид-рофооными фазами, образуемыми в ламеллярных структурах хлоропластов различными их компонентами. [c.55]

    Пероксидное окисление липидов приводит к деструктивным изменениям в клетках, что связано с накоплением продуктов, способных инактивировать ферменты мембран, нарушать взаимодействия между белками и липидами в мембранах, образовывать межмолекулярные ковалентные сшивки между молекулами липидов или липидов и белков, изменять вязкость липидной фракции, что препятствует образованию фермент-субстратных комплексов и т. д. Для снижения уровня активности пероксидного окисления липидов существуют антиоксиданты, к которым можно отнести витамины Е, С, Р-каротин, кофермент Q и гемсодержащие ферменты супероксиддисмутаза, каталаза, глутатионпероксидаза, глутати-онредуктаза. Но при активизации процессов пероксидного окисления липидов (как следствие простудных и легочных заболеваний, атеросклероза, инфаркта миокарда, инсульта мозга, диабета, язвы желудка, туберкулеза, остеохондроза, злокачественных опухолей и др.) возможно подавление активности антиоксидантных веществ, и тогда в клетках происходят вышеописанные процессы, которые с клеточных мембран переходят на цитоплазматические структуры. В результате происходят денатурация белков, снижение активности ферментов, повреждается геном. Такое явление носит название окислительный стресс, который завершается гибелью клетки путем некроза (разрушения клеточных структур) или апоптоза (запрограммированной гибели). [c.433]

    Л. В гл. VI, обсуждая возможные механизмы возникновения примитивных клеток, мы рассматривали способы, посредством которых изолированные липидные и белковые компоненты могли ири рекомбинации взаимодействовать друг с другом с образованием примитивных мембраноподобных структур. Проводя такие исследования, мы достигаем более полного и более детального понимания тех процессов взаимодействия между белками и липидами, которые лежат в основе функционирования и строения как современных, так и более примитивных мембран. Мы рассматривали также коллоидные явления при образовании коацерватов. В то время как специалиста по коллоидной химии могут и не интересовать специфические взаимоотношения между коацер-вацией и биогенезом, химик-эволюционистисследуст способы, но- средством которых коацерваты взаимодействуют с находящимися в среде ферментами и накапливают эти ферменты, а также способы возникновения изолированных, локализованных метаболических процессов. На самом деле проведено еще слишком мало исследований но биогенезу, чтобы можно было точно представить себе, каким образом коллоидные явления были связаны с первичной эволюцией и примитивным метаболизмом и в конечном счете — с формированием прототипа живой клетки. В этом направлении остается сделать еще очень многое. Несомненно, исследования такого рода позволят более полно понять главные физико-химические закономерности, лежащие в основе функционирования живой клетки. [c.320]

    Для понимания молекулярной организации мембраны миелина критическим является изучение коротко- и длиннорадиусных взаимодействий между белками и липидами. Несомненно, что изменение структуры белков или липидов ведет к изменению такого рода взаимодействий и приводит к нестабильности миелина, в том числе к демиелинизации. [c.119]

    Взаимодействия между белками и липидами имеют место не только в мембранах, но и в липопротеидах. Липопротеиды — это мицеллоподобные агрегаты. Здесь мы рассмотрим только липопротеиды плазмы, которые являются нековалентными агрегатами различных липидов и пептидов. Как уже отмечалось, на поверхности бактериальных клеток существуют и ковалентные липидно-белковые соединения. В плазме различают четыре основных класса липопротеидов. Это (в порядке возрастания плотности) хиломикроны, липопротеиды с очень низкой плотностью (ЛОНП), липопротеиды с низкой плотностью (ЛНП) и липопротеиды с высокой плотностью (ЛВП). [c.231]

    ЛИПОПРОТЕИНЫ (липопротеиды), комплексы, состоящие из белков (аполипопротеинов, сокращенно-апо-Л.) и липидов, связь между к-рыми осуществляется посредством гидрофобных и электростатич. взаимодействий. Л. подразделяют на свободные, или р-римые в воде (Л. плазмы крови, молока, желтка яиц и др.), и нерастворимые, т. наз. структурные (Л. мембран клетки, миелиновой оболочки нервных волокон, хлоропластов растений). Нековалентная связь в Л. между белками и липидами имеет важное биол. значение Она обусловливает возможность своб. обмена липидов и модуляцию св-в Л. в организме. [c.603]

    Применение калориметрии и денсиметрии в биологических исследованиях позволило значительно продвинуться вперед в изучении взаимодействий как между низкомолекулярными веществами (ионы биометаллов, аминокислоты, пептиды, основания нуклеотидов и некоторые другие биомолекулы), так и между биополимерами (белки, липиды, полисахариды) в водных растворах [5, 6, 15-18]. Является чрезвычайно важным, что в этих исследованиях значительное место отведено рассмотрению взаимодействий растворенное вещество-растворитель и установлению роли сольватации в проявлении биологических функций молекул перечисленных выше соединений. [c.5]

    В целом нековалентные взаимодействия между липидами и белками рассмотрены ниже. Разумеется, окисленные липиды сохраняют свои общие свойства и взаимодействуют с белками в соответствии с теми же основными принципами, что и неокис-ленные липиды. Заметим, однако, что окисленные липиды более полярны, чем неокисленные, и, следовательно, не всегда возможно отделить их от белков неполярными растворителями, такими, как эфир. Кроме того, их особая реактивность временами, когда возникают такие взаимодействия, способствует образованию или расщеплению ковалентных связей. [c.300]

    Во всех этих случаях, когда липиды связаны с белками, они придают им особые трофические и функциональные свойства. Эти свойства касаются в первую очередь самих липидов, а затем особенностей взаимодействия между липидами и белками. Как уже указывалось, эти взаимодействия могут иметь отношение к окисленным или неокисленным липидам, быть ковалентными или нековалентными, способными оказывать влияние на питательную ценность или на органолептические качества продуктов, а также на их функциональные свойства. [c.315]

    Цитоплазма и мембраны. Цитоплазма — это сложная система, в которой дисперсионной средой является вода с растворенными в ней электролитами, а дисперсной фазой служит ряд взаимодействующих между собой высокомолекулярных веществ, образующих сложные высокоспецифичные структуры. Понятие цитоплазма применительно к бактериальным клеткам и клеткам актиномицетов аналогично понятию протоплазма , так как эти организмы не содержат оформленного ядра и, соответственно, ядерной цитоплазмы (кариоплазмы). В протоплазме в среднем содержится 70-85 % воды, 10-20 % белков, 2-3 % липидов, 1 % углеводов и около 1 % солей и других веществ. Вода в клетке находится в свободном и связанном состоянии. Свободная вода удерживается в клетке капиллярными силами в тончайших канальцах эндоплазматического ретикулума и/или в губчатой системе различных мембран. Связанная вода удерживается преимущественно молекулами белков, вокруг которых образуются сольватные (гидратные) оболочки. Соотношение свободной и связанной воды в клетках разных микроорганизмов весьма вариабельно и нередко меняется с возрастом, с изменением их физиологического состояния и пр. Сольватная оболочка вокруг [c.20]

    Форма "678" - это хлорофилл в агрегированном состоянии (ХБЛ) п. Термином "агрегированный" А.А.Красновский обозначает те формы пигмента, где имеется взаимодействие между модекуланв пигмента - это коллоидные частицы, тверже пленки, плотно упакованные монослои на фазовых границах (Красновский, 1962,1967). Агрегация защищает пигаенты, связанные с белками и липидами,от необратимого фотохимического окисления. Пигмент в агрегированном состоянии так же, как и в живых листьях, весьма устойчив к действию света и воздуха. [c.89]

    НЫХ слоев или глобул белки адсорбированы на обоих сторонах мембраны (рис. 90). Модель, предложенная Бенсоном, описывает липопротеиновые субъединицы мембраны тилакоидов. Эти субъединицы удерживаются вместе благодаря гидрофобным взаимодействиям углеводородных групп липидов и гидрофобных внутренних областей белков. В некоторых моделях (например, предложенной Съёстрандом) рассматриваются липидные мицеллы, окруженные белками. Эти образования могут переходить в структуру гофрированного слоя. Согласно Вандеркуи и Грину, мембрана состоит из белковых глобул, между которыми вкраплены липидные молекулы.  [c.216]

    В родопсине 11-г<мс-ретиналь ковалентно связан с опсином путем образования шиффова основания (альдимина) между его альдегидной группой и е-аминогруппой ли-зинового остатка опсина. Чрезвычайно важное значение имеют также нековалентные взаимодействия между боковыми группами остатков аминокислот белка и л-электрон-ной системой полиена, которые, во-первых, определяют конформацию хромофора в составе родопсина, а во-вторых, вызывают поляризацию 7г-электронной системы поли-енового фрагмента. Энергетические характеристики нековалентных взаимодействий между опсином и полиеновой цепью зависят от структуры белка и сопряженных с ним липидов и углеводов и существенно различаются для различных родопсинов. Именно эти эффекты совместно с индукционным эффектом, возникающим от образования альдиминной связи, обусловливают 1) значительный сдвиг в красноволновую область максимума поглощения 11-цыс-ретиналя в составе родопсина (Ящах = 500 нм) в сравнении с альдегидом в свободном состоянии = 375 нм) 2) вариации величины тах У разных зрительных пигментов. Все это приводит к повышению чувствительности светового и цветового восприятия. Цветовое зрение человека — это трихроматический процесс, за который ответственны рецепторы, чувствительные к разному цвету — синему (Я ах = 440 нм), зеленому ( тах =535 нм) и красному (Я ах = 575 нм) — и содержащие различные пигменты. Различие в Я ах поглощаемого света обусловлено особенностями строения опсина и нековалентных взаимодействий опсин — хромофор. Все детали структуры и функций фоточувствительных пигментов в настоящее время еще не выяснены до конца, но установлено, что в основе механизмов функционирования зрительных пигментов заложены многостадийные циклические процессы. Рассмотрим основные молекулярные события, происходящие при попадании кванта света на сетчатку глаза человека. [c.133]

    Межмолекулярные взаимодействия в тонких пленках и мембранах. Уже простой анализ действия факторов, приводящих к дезинтеграции тонких углеводородных пленок и биологических мембран, позволяет получить определенное представление об особенностях различных межмолекулярных взаимодействий (электростатические и ван-дер-ваальсовы), формирующих эти структуры (см. гл. VIII). В мембранных системах электростатические взаимодействия осуществляются между анионными липидами, амино- и SH-группами аминокислотных остатков белков (положительный заряд), а-карбоксильными группами сиаловой кислоты (отрицательный заряд) и т. д. Условно выделяют три типа электростатических взаимодействий в мембранных системах латеральное, или тангенциальное взаимодействие заряженных групп молекул, которые расположены в одном полуслов мембран трансмембранное взаимодействие заряженных групп, расположенных по разные стороны мембраны межмембранное взаимодействие заряженных групп, расположенных на поверхности двух соседних мембран.  [c.20]

    Пытаясь разрешить противоречия модели Робертсона и отразить тот факт, что белки отделяются от липи юв лишь органическими растворителями и детергентами [17], а также учесть-существование субъединиц в мембране, Бенсон [19] предложил более сложную модель, в которой основная роль отводится неполярным взаимодействиям между жирными кислотами и белками (модель липо-протеинового ковра , рис. 6, в). Эта модель, как видно из рисунка, принципиально отличается от предыдущих моделей, однако, она не отражает наличия трехслойной структуры, обнаруживаемой у большинства мембран, а также возможности сплошного бимолекулярного слоя липидов. [c.147]

    Таким образом, на современном уровне знаний Ма , К -АТФаза представляется олигомером, в котором взаимодействие между протомерами выражено сильнее, чем между глобулами белка и его липидным окружением. Количество протомеров в таком комплексе определяется, по-видимому, той конформацией белка, которую ему диктует липидное микроокружение. Сами взаимодействия между протомерами контролируются липидами. Показано, что взаимодействия между протомерами фермента в процессе гидролиза АТР не остаются постоянными доля крупных ассоци-атов АТФазы возрастает на стадии взаимодействия ее с ионами калия, а подвижность этих ассоциатов в мембране резко увеличивается при связывании АТР. [c.49]

    Организованная многослойная структура миелина, имеющая самое высокое содержание липидов, поддерживается длинно- и короткорадиусными взаимодействиями между липидами и основным и протеолипидным белками. Формирование миелина является сложным синхронизированным процессом взаимодействия аксона и глии, любое его нарушение вызывает де-миелинизацию. [c.144]


Смотреть страницы где упоминается термин Взаимодействия между белками и липидами: [c.100]    [c.70]    [c.88]    [c.218]    [c.271]    [c.179]    [c.161]    [c.118]    [c.29]   
Смотреть главы в:

Биофизическая химия Т.1 -> Взаимодействия между белками и липидами




ПОИСК





Смотрите так же термины и статьи:

Липиды



© 2024 chem21.info Реклама на сайте